
1

FUZE4 Nintendo Switch

Programmer’s Reference Guide

By David Silvera & Colin Bodley

V 0.2.11

2

CODING & COMPUTING WORKSHOPS

for Schools, Academies, Colleges, Universities,

Computing Clubs, Holiday Camps & Special Events

www.fuze.co.uk

To contact FUZE call +44 (0) 1844 239 432
(UK 09:30 am to 17:00 pm weekdays)

or email contact@fuze.co.uk

Published in the United Kingdom ©2019 by FUZE Technologies Ltd. FUZE, FUZE4,

FUZE logos, designs, documentation and associated materials are Copyright FUZE

Technologies Ltd. FUZE is a UK registered trademark [UK00002655290].

No part of this document may be copied, reproduced and or distributed without

written consent from FUZE Technologies Ltd. Nintendo and Nintendo Switch are

copyright of Nintendo. Any other brand names are the copyright of their respective

owners. All rights reserved.

FUZE4 Nintendo Switch is developed by FUZE Technologies Ltd in the UK by;

Jon Silvera - Project manager and CEO

Luke Mulcahy - Lead programmer

Will Tice – Programmer and Graphic Artist

Mike Green – Dev supervisor and programmer

David Silvera – Help content author, Sound engineer & lead Tutor

Kat Deak – 3D Graphic Artist

Colin Bodley - Technical consultant & Help content author

Martin White - Technical consultant

Nic Baxter – Sales Guy

Ben Taylor / Lizzie Botelle – Product testing and FUZE helpers

www.fuzearena.com

Join the FUZE community – share your projects, get tips and

help from the experts and help others

3

Getting started

Introduction

Using FUZE

Code Editor

Map Editor

Image Editor

Keyboard Shortcuts

Keywords

Operators

About Operators

Command reference

2D Graphics

3D Graphics

Arithmetic

Binary

File Handling

Input

Screen Display

Sound and Music

Text Handling

Time and Date

Quick reference guide

About

5

10

12

15

25

37

39

84

120

121

307

363

412

420

427

437

449

477

502

517

511

Tutorials

Loops

Variables

If Then Statements

Screen

Arrays

Using Controls

For Loops

Functions

And Or Not

Variables Extended

Drawing Images

Structures

Making Music

Vectors

Sprites

Sprite Game

3D Simple Shapes

3D Simple Lighting

3D Simple Rotation

3D Camera Movement

Game – Introduction

Game – The Background

Game – The Level

Game – The Character

Game – Movement

Game – Animation

Game – Items

Game – Enemies

Game - Customise

529

532

535

538

547

550

556

560

564

569

572

578

584

596

601

606

618

625

629

633

639

639

648

656

664

670

677

684

692

4

Getting Started

5

Epilepsy Warning

This program allows users to create flashing images.

Some people may experience a seizure when exposed to certain visual images, including flashing
lights or visual patterns.

The risk of photosensitive epileptic seizures may be reduced by taking the following precautions:

Use in a well-lit room.

Do not use if you are drowsy or fatigued.

View with greater distance from the screen so that it fills less of one’s field of vision.

Should you experience any sensations of light-headedness, dizziness, nausea, altered vision, eye or
face twitching, jerking or shaking of arms or legs, disorientation, confusion, or momentary loss of
awareness, then please immediately stop playing and consult a doctor.

Introduction

Hello! Welcome to FUZE4 Nintendo Switch. Congratulations on your awesome purchase!

If you’re new to coding and not sure where to start, you’ve come to the right place! In this
introduction we’ll be covering a few important things to bear in mind whilst using FUZE.

If you are an experienced programmer already, we recommend that you jump right in and flex
your coding muscles! You can find a detailed description of every function, keyword and operator
in the Command Reference.

Coding is an incredible skill. Every electronic device, video game and piece of software you’ve ever
used all run on code. The world would be a very different place without it.

Before we dive in to some details about the software let’s get a few things out of the way.

Learning to code is like learning a super power. You can find it difficult to get things right at first,
you will make many mistakes, you might even think your new powers aren’t working for you. Just
like with everything else in life, practice makes perfect.

Keep honing your skills, figuring out problems and completing projects. Soon you’ll be a coding
super hero!

Improvement takes time, so don’t be disheartened if you get things wrong! Every error (or bugs as
we call them) you fix makes you a better programmer.

FUZE4 Nintendo Switch gives you a handheld environment to create anything you want. But
where to begin?

6

Well, here are a few important things to keep in mind.

Computer Languages

You may have heard that computers are very complicated things. This is true to an extent, but one
also say that in some ways they are very simple and logical.

A computer understands two things. On, and Off. True and False. 1 and 0.

A computer’s brain is called the CPU. It is made of lots and lots of switches that are Simply on or
off.

Where it gets complicated is that there really are lots of them. Billions and billions actually.

Whenever you use a computer to play a game, message your friends, surf the net or do your
homework, what you are doing is changing billions and billions of switches incredibly quickly.

How does your computer manage to do all these things using just 1’s and 0’s? A very clever chap
called Gottfried Leibniz invented something called the Binary Number System, and it is vital to
all computers. We’ll talk about binary in more detail later.

Now, it would be quite boring and incredibly difficult to write a whole program using 1’s and 0’s,
so some incredibly clever people developed computer languages to “speak” to the computer in a
way which makes more sense to us.

There are many computer languages out there in the world. Thousands and thousands of them.
They’re very different to each other and are designed for different reasons.

The language you will be using here is called FUZE!

FUZE is similar to languages you might use if you study Computer Science at school, or even those
used by professional computer programmers. However, with FUZE we have put great emphasis on
making things simple and intuitive to learn and use.

Formatting

When writing code we can lay it out in lots of different ways, we call this formatting.

Here’s an example of some messy code below:

 1. loop
 2. ink(fuzepink)
 3. print("HELLO")
 4.
 5. update()
 5. sleep(1)
 6.
 7. repeat

We have lots of random spaces and blank lines for no reason, but, and it’s important to say this,
the code above will work just fine.

7

The program is a small loop, we are printing the word “HELLO” in a nice pink colour, waiting for 1
second then repeating the loop.

The same code formatted differently will work exactly the same. See the example below:

 1. loop ink(fuzepink) print("HELLO") update() sleep(1) repeat

It doesn’t matter to FUZE whether your program is written on just one line, but as your programs
get bigger and more complex it will make finding bugs and editing your code much more difficult!

How we format our code will have a big effect on how we read it, so learning at the start how to
format our code correctly will help us greatly in the future.

Compare the previous examples with the formatting of the code below:

 1. loop
 2. ink(fuzepink)
 3. print("HELLO")
 5. update()
 6. sleep(1)
 7. repeat

Doesn’t that look neater, some might say more logical?

Now we can easily see where our loop begins and ends, and everything in between is tabbed.

Remember: this code above will run in exactly the same way as the previous examples. The only
difference is that it is easier to read and edit.

The projects and tutorials in FUZE are all formatted this way. You don’t have to copy us, in fact
you might want to make up your own style of formatting that works for you!

Syntax

Here’s a strange word which you may or may not know!

Syntax describes the structure of statements in a computer language. Certain statements must
be structured in a particular way if we want them to work. Take the example below:

 1. prin t("see the mistake?")

Can you spot the mistake we made?

We’ve made a crucial syntax error. We put a space between the “prin” and the “t” in the word
“print”. FUZE will read this as two separate statements.

If we correct this syntax error, we get:

 1. print("see the mistake?")

Now FUZE knows exactly what to do and we’ll get no error.

Let’s see another very similar example:

 1. print("what about now?)

8

This one might be trickier to see, but we’ve made another syntax error.

Can you spot it?

We’re missing a " before the last bracket! Without it, FUZE will be confused by what you want to
print.

Certain statements must be laid out in a particular way, and this is often to do with punctuation.
Always double check the placement of your commas, speech marks and brackets.

Functions and Keywords

During the tutorials you’ll be seeing a few words again and again.

Something you’ll need to know for the upcoming projects is what we mean by a function. We’ll go
into more detail further into the tutorials, but for now, take a look at the line of code below:

 1. print("Print is a function.")

When we want to print words on the screen, we use the print() function.

See the brackets after the word print? This is how you know we’re using a function! In FUZE,
functions will also appear in a light blue colour.

Functions usually need some information in the brackets to work. For example, the print()
function needs something in the brackets to print on the screen.

Here’s another:

 1. ink(green)

This one is called the ink() function. We use it to change the colour of text on the screen. This
time, we put a colour in the brackets!

When you see the name of a function in the FUZE tutorials, it will have brackets after it, like this:
print()

This is to make it as clear as possible that functions always have brackets after them.

Keywords are a little different. They do not use brackets, and in FUZE4 Nintendo Switch they
appear as a red/pink colour. Take a look below:

 1. loop
 2. repeat

The two lines above are an empty loop. loop and repeat are keywords.

Keep your eyes peeled in the upcoming projects to see clearly which parts are functions and
which parts are keywords.

9

Let’s get started!

Well done for reading all the above information. You are now fully equipped to get started with
the tutorial projects and begin your journey to coding mastery! Looking forward to seeing you in
the tutorials, let’s go and have fun coding!

10

Using FUZE

When you first load FUZE4 Nintendo Switch you will be greeted by the main menu screen:

From here you can access all of the tools and features FUZE has to offer.

Command Bar

Before we take a look at each menu item, take a closer look at the bottom of your screen:

This helpful little bar lives at the bottom of every screen in FUZE4 Nintendo Switch. It’s called the
Command Bar, and it tells you all of the controls you currently have access to.

Be sure to check the Command Bar for guidance if you’re stuck with the controls!

Code

With the selection cursor on the ‘Code’ button, press the A button on your Joy-Con controller
(Enter key on USB keyboard) to be taken to the Code Editor.

The Code Editor is where you’ll be spending most of your time with FUZE. This is the place where
we will actually write a program! From the Code Editor, you can also access the Media Browser to
load assets, or check out the tutorials.

There are lots of controls to get used to in the Code Editor - Keep your eye on the command bar
at the bottom of screen!

11

Media

Pressing A on the ‘Media’ button will take you to the FUZE4 Nintendo Switch Media Browser.

From here you can browse the vast collection of visual and audio assets at your disposal. Perhaps
you’ll stumble across something awesome for your next game idea!

Programs

Selecting the ‘Programs’ button from the Main Menu will take you to the existing programs in
FUZE4 Nintendo Switch. From here you can start a new project, load one of the included demo
programs or share or load one of your own projects. You’ll have to make some first of course!

Project

The FUZE4 Nintendo Switch Project Menu is where we’ll find information on the currently loaded
project. You can edit your project details, manually save and begin new projects here.

Friends

Selecting the ‘Friends’ option from the Main Menu will take you to a page displaying all of your
Nintendo Switch friends. If they have FUZE4 Nintendo Switch themselves, you can download their
shared projects from this screen.

Tools

Want to make your own level using the assets? Perhaps you want to create your own assets to use!
Either way, the Tools menu is the place you need.

Pressing the ‘Tools’ button will take you to a selection between the Map or Image Editor. Use the
Map Editor to create level maps from the assets in FUZE4 Nintendo Switch. Use the Image Editor
to create your own assets!

NOTE: Maps and images created using the map editor or image editor are saved into a specific
project. When you open either the map or image editor you will be prompted to select a project
first.

Settings

As you might imagine, the ‘Settings’ button on the Main Menu will take you to the Fuze4 Nintendo
Switch settings page. From here you can adjust FUZE to your heart’s content, changing the
appearance and behaviour of the application.

12

Code Editor

To enter the code editor select the ‘Code’ button from the Main Menu, it looks like this:

Take a look at the command bar at the bottom of the screen. Here you can find button prompts to
help you navigate the editor.

Press the + button to run a program. Press the - button to return to the Main Menu.

On-Screen Keyboard

Press in the left control stick to open the keyboard:

13

Check the command bar at the bottom of the screen and you will see it has changed to display the
controls for the on-screen keyboard. Make sure to refer to the command bar if you’re not sure
how to control FUZE!

With the keyboard on screen, moving the left control stick will allow you to select keys to press.
Use the A button to press a key.

Pressing the ‘Media’ button on the keyboard is a fast and easy way to access the Media Browser if
you’re looking for assets to use.

Similarly, pressing the ‘Help’ button on the keyboard will open the in-editor Help menu:

14

When the in-editor Help menu is open, notice the command bar has changed to display the
controls for the Help Menu. From here you can navigate to any page you want to view, and view it
with your code on screen.

If you want to enter or edit code with the Help Menu on screen, click in the left control stick to
open the keyboard.

15

Map Editor

<>

The FUZE4 Nintendo Switch map editor is designed to make it easier to create your own maps.
Access the Map Editor by going to the Tools icon from the Main Menu, then select ‘Map Editor’ and
if it’s your first time using FUZE you’ll see the screen shown below:

As we have no projects in our user save data, there is nothing for us to do. Let’s create a project so
we can store a map. Return to the Main Menu and click the ‘Project’ button. You’ll be taken to this
screen shown below:

16

what we have here are the project details for the default FUZE program, ‘Hello World’.

Select the ‘New Project’ button on the left to create a new project file in our user save data. This
will allow us to start creating maps for that project.

Enter the title, author and description for your first project.

It is a good idea to create a project in which to store all of your map data going forward. This will
be a handy way of knowing where all of your maps are for future reference. Why not call it
something like ‘Map Storage’ or ‘Atlas’?

Once you’ve created the project you’ll be taken to Code Editor. Return to the Main Menu using the
minus button on the Joy-Con controller, then click the ‘Tools’ icon followed by ‘Map Editor’:

17

As you can see, we can now see our newly created project. Click the project icon and you’ll be
taken to the next window:

This window is where we can see all the maps stored within this project. Since we don’t have any
yet, let’s click the ‘New Map’ button to get started!

You will be prompted to enter a name for your map, then press the plus button to confirm.

Name your map and press the plus button. You will see a message reading “Choose assets to use in
your map!”. Pressing okay will take you to the FUZE Media Browser to select some assets. For this
example, we’ll be using some assets by the very talented ‘Untied Games’. Select the ‘Untied Games’
artist icon in the media browser:

18

Scroll down and you’ll find the tilesheet called “Untied Games/World map tiles”. Open this
tilesheet by pressing the A button, then press the Y button to add this asset to your map library as
shown at the bottom of the screen.

Once the Y button is pressed, notice that the text at the bottom of the screen now reads differently,
we can press the Y button once more to remove this asset from our Map Library.

We now have the option to go back into the Media Browser and to keep adding assets to use in our
map design. For now, we’ll stick with this tilesheet. Press the B button to go back, then press the
plus button to enter the map editor:

19

Here we are! Now we’re in the Map Editor, take a look at the bottom of our screen. We have two
options. We can add more assets to our libray by pressing the L and R buttons at the same time.
We can also open the currently selected spritesheet to begin drawing with those assets.

Since we only have one tilesheet loaded into our library, we can only see one option at the bottom
of the screen. If we had more assets loaded into the Map Library, these would appear here. Let’s
open the tilesheet to begin building. Press the A button to open the tilesheet:

Before we start placing tiles, it’s important to take a look at the control options in the top left
corner of the screen. Pressing the Y button will change the way the tiles snap together. Snapping to
‘Object’ will allow you to place tiles perfectly next to each other. Snapping to ‘Grid’ will force the
tiles into strict grid positions, whilst snapping to ‘None’ allows for totally free placement.

20

The ‘Grid’ option just beneath is the size of your grid squares. A higher number will allow for more
precise grid placement.

The ‘Mode’ option just beneath that allows you to change the editing mode. By default, we are in
Object mode. This means we are simply placing tiles. By pressing the arrows on this box we can
change our edit mode to Collision. This will become useful when we actually have a map! So let’s
make one.

The last option to touch on here is just beneath the Mode selection. By using the up and down
directional buttons, you can change the layer upon which you place tiles. This is great for building
complex maps.

Once the tilesheet is opened we will be able to see all of the individual tiles along the bottom of the
screen. Use the L and R buttons to navigate to the tiles you want.

If you place a tile and would like to delete it, simply move the cursor highlight over the tile and
press the B button.

Here we have a small world map section we could potentially use. Let’s add some collision data
using the Collision edit mode.

Move your cursor to the arrows displayed on the top left boxes and press the A button to change
to Coliision mode:

21

Notice the bottom of the screen has changed now we’re in Collision mode. Now we can place
boundary boxes in the areas we want to behava in certain ways. For example, we might make it so
that the player cannot enter the water. To achieve this easily, we can simply draw collision boxes
around the areas:

It’s very useful in Collision mode to use the ‘Object’ snapping mode. Move the cursor to the area
you want your collision to begin, then press the A button to start placing a box.

Moving the cursor around will adjust the position of your box. Use the direction buttons to fine-
tune the size of your collision box precisely.

22

It’s a great idea to overlap collision boxes to avoid any strange behaviour with the corners. Now
that we’ve got our collision data set, we’re ready to go with this map!

To save your map, simply press the minus button to return to the Main Menu. You’ll see the FUZE
save icon appear in the top right.

Copying a Map to a New Project

Let’s get this map loaded into a project. Since we’re using the current project file as map storage,
we will want to copy this map into a new project. From the Main Menu, select the ‘Project’ icon
and create a new project:

Once our project is created, return to the Main Menu and select the ‘Tools’ icon and then ‘Map
Editor’

23

Select the ‘Map Storage’ project to see our map:

Press the X button to view the options for our map. You’ll see a menu with three options. Select
‘Copy Map’:

You will see two options. Select ‘Copy To Another Project’.

You will now see the list of projects we can copy our map to. We want to copy the map to our
newly created project:

24

Select the project to copy to, then you’ll be prompted to create a new name for the copied map.
Once you’re finished, return to the Main Menu.

Select the ‘Programs’ icon and open our new project with the copied map. This will take us to the
code editor.

The first order of business is to load the map into memory. We use the loadMap() function to do
this:

 1. loadMap("Map - 001")
 2.
 3. setSpriteCamera(gWidth() / 2, gHeight() / 2, 2)
 4.
 5. loop
 6. clear()
 7. centreSpriteCamera(0, 0)
 8. drawMap()
 9. update()
 10. repeat

This program above will simply load our map and draw it at the centre of the screen with a zoom
of 2.

Check out the map commands in the Reference Guide, they’re linked just underneath. Using the
variety of 2D graphic controls, with FUZE you can do just about anything with your map from
here. Check out the map demos in the FUZE Projects too for more inspiration and how to use your
collision data!

Map Commands

collideMap(), detectMapCollision(), drawMap(), drawMapLayer(), loadMap(), unloadMap()

25

Image Editor

FUZE4 Nintendo Switch gives you access to a vast library of assets to use in your projects, but it
also allows you can create your own sprites and levels using the Image and Map editors!

<>

From the Main Menu, select the ‘Tools’ icon followed by the ‘Image Editor’ icon. If it’s your first
time using FUZE, you’ll see the following screen:

As you can see, we have nothing to do! User created images are stored in individual project files.
Let’s create a project which can store our images in. Return to the Main Menu and select the
‘Project’ icon:

26

Here we can see the default loaded project which comes with FUZE. Everybody’s favourite - “Hello
World”. We want to create a new project to store images into. Select the ‘New Project’ button and
enter a name for the new project. We’ll go with “Image Storage” for this example.

Once you’ve created the project you’ll be taken to Code Editor. Return to the Main Menu using the
minus button on the Joy-Con controller. From here, click the ‘Tools’ icon followed by ‘Image
Editor’:

We can now see our newly created project. Click the project icon and you’ll be taken to the next
window:

27

This window is where we can see all the images stored within this project. Since we don’t have
any, let’s click the ‘New Image’ button to get started!

You will be prompted to enter a name for your image, then press the plus button to confirm. Once
complete, you’ll be taken to the Image Editor.

In the Image Editor Screen

Right away there are a few things to take note of. Take a look at the box in the top right of the
screen. This is the size of your image in pixels. By default this will be 100 by 100 pixels.

To adjust your image size, move the cursor over one of the grey arrows at the edges of the image.
Select it with the A button, then move the control stick around to adjust the size.

28

Once you’ve got the size you want, press the A button again to confirm. This will also centre the
image. As you can see, we’ve gone for an image size of 64 by 64 pixels and the image area is
centred on screen.

Grid Options

Next up, take a look at the box at the top left of the screen. Here we’ll find our grid options. Move
your cursor over the small box with a green tick and press the A button to toggle the grid on and
off:

Our grid has vanished and the small box now displays a red cross rather than a green tick. Press
the box again to bring the grid back.

The next box along can be pressed to change the origin point of the image.

29

Finally, the arrow buttons either side of the number ‘64’ on the grid options panel will change the
density of the grid. Selecting a lower number will increase the amount of visible squares and help
for finer detailing:

Use the ZR and ZL buttons to control the zoom. ZR will zoom the image in, whilst ZL zooms out.
Pressing both the ZR and ZL buttons at the same time will bring up the quick zoom menu:

30

From here you can select a zoom level quickly.

That about covers it for setting up our image! Let’s see what we can do with the brush.

Brush Options

The box just beneath the Grid Options are our Brush Options. We can change the colour, the shape
and the size. We’ll get to colour shortly, for now let’s focus on the options beneath.

The ‘Brush’ setting just below will change the brush shape between a square or a circle. When
drawing small images pixel by pixel, the ‘Square’ brush option is ideal - whereas for colouring a
large region, you might find the ‘Circle’ brush more suitable.

Lastly, the ‘Size’ setting just beneath will change the size of your brush. Who’d have thought?!

Pressing the L and R buttons will change the selection at the bottom of the screen between ‘Pencil’,
‘Line’, ‘Box’ and ‘Circle’ modes. This changes the way we draw. Selecting one of these tools will
allow you to draw simple shapes easily. When drawing either a box or a circle, you will see a
couple of new options displayed:

31

While drawing either a box or a circle, notice the command bar prompts at the bottom of the
screen. Pressing the Y button will fill the object in with the selected background colour. Pressing
the X button toggles the centre of the object.

Colours

Let’s take our eyes back up to the ‘Colour’ option at the top left. We have two boxes here, one for
‘foreground’ (FG) and one for ‘background’ (BG). Select the foreground box and select a colour.
You should see the colour picker on screen:

Here you can move the left and right control sticks to select a colour and hue. You can also use the
up and down directional buttons to adjust the alpha (transparency).

32

Once you’ve found a colour you want to use, press the A button to confirm. This will change the
colour of the box foreground box:

When we draw using the A button we are using the foreground colour.

Let’s draw a simple image using a couple of colours:

There we go! Here is my brilliant (if I do say so myself) character.

There is a very useful tool in the image editor to select a colour we have already used. Currently
the paint is set to a yellow colour. If we want to select the same white we’ve used in the image,
simply place the cursor over the desired colour and press the X button:

33

Notcie that the foreground colour in the box has changed to white? Using this tool we can easily
grab colours from anywhere in our image.

You can also press the left stick to bring up the colour picker at any time.

Loading and Drawing Your Image

Alright we’ve got a finished image here, let’s load it into a program. Since we’re using this project
as just image storage, we’ll want to copy this image to a new project.

Begin a new project by returning to the Main Menu and selecting the ‘Project’ icon. Enter the title,
author and description if desired. Once finished, you’ll be in the Code Editor. Return to the Main
Menu using the minus button.

Go to ‘Tools’, then ‘Image Editor’ like before. You should see something like this:

34

On the left we have the icon for the newly created project which we want to use the image in. On
the right, the cursor is over our image storage project where the image is currently saved. You can
see a list of the stored images in the project on the right of the screen in the project information
panel.

Selecting the ‘Image Storage’ project icon will take us to the images stored in that project.

As you can see our image is now displayed here. Move the cursor on to the image and press the X
button to view the image options:

35

Select the ‘Copy Image’ option and you’ll see two further choices. You may either copy the image
to the same project (duplicating it) or you can copy the image to another project for use.

Select ‘Copy To Another Project’ then select the newly created project which we want to copy the
image to.

Once you’ve selected the project, you’ll be prompted to input a new name for the image if desired.

The Code

Once your project file contains the image you want to use, it’s time to load and draw the image
using code!

Enter the following into the code editor:

36

 1. img = loadImage("Image - 001", false)
 2.
 3. loop
 4. clear()
 5. drawImage(img, gWidth() / 2, gHeight() / 2, 4)
 6. update()
 7. repeat

On line 1 we store our image into a variable using the loadImage() function. The filename on line
1 “Image - 001” will of course need to be the name of your image. The false in the LoadImage()
brackets sets no filter to the image. This will keep the edges of our pixels nice and sharp. If you
want to blur the edges of your image, set this to true.

Next, we have a very simple loop in which we simply use the drawImage() function to draw our
image in the middle of the screen, with a scale multiplier of 4.

There we have it! We have created our very own image and drawn it to the screen. What more
could you do with it? The limit is your imagination! Check out the image commands linked below
to see more of the 2D graphics functions available to you.

You could very easily draw multiple images of different animation frames, store them in a big
array and create your own animated sprite!

Image Commands

drawImage(), drawImageEx(), freeImage(), imageSize(), loadImage()

37

Keyboard Shortcuts

You can connect a USB keyboard to your Nintendo Switch Console to make typing quicker and
more accurate.

While using a USB keyboard there are a number of very helpful shortcuts worth knowing!

Function Keys

At the top of the keyboard you will find a row of F keys (function keys).

Each one does something different in FUZE4 Nintendo Switch. Take a look at the list below:

F1 - Opens the Help menu. If you are in the code editor, this will open the in-editor Help menu. If
you’re on the Main Menu it will take you to the main Help section.

F2 - Takes you to the Media Browser.

F3 - Saves your project.

F5 - Pressing F5 will run your program. This works no matter where you are in FUZE, unless you
are editing a program’s description! When editing a program’s description, F5 will confirm and
return you to the program.

F6 - Takes you to the Image Editor.

F7 - Takes you to the Map Editor.

F8 - Takes you to the Settings menu.

F9 - Takes you to the Code Editor.

F10 - Takes you back to the Main Menu.

F11 - Toggles text edit/help documentation view in the Code Editor.

Editing Shortcuts

There are also a number of handy shortcuts to use while writing code in the Code Editor. These
are:

Shift - Select text (hold to select)

Alt - Select text (press to toggle on/off)

Ctrl + K - Show / Hide Keyboard

Ctrl + B - Bookmarks

Ctrl + V - Paste code

38

Ctrl + C - Copy selected code

Ctrl + X - Cut selected code

39

Keywords

40

and

Purpose

Join two conditions together

Description

The resulting condition is true if both of the conditions are true

Syntax
if condition1 and condition2 then ... endIf // ... is executed ONLY if both conditions are met

Arguments

condition1 first condition

condition2 second condtion

Example
setCamera({ 0, 10, 10 }, { 0, 0, 0 })
bright = 50
light = worldLight({ -5, -5, -5 }, white, bright)
lighton = true
ballmodel = loadModel("Kat/Discoball")
ball = placeObject(ballmodel, { 0, 0, 0 }, { 10, 10, 10 })
loop
 c = controls(0)
 if c.x and !lighton then
 light = worldlight({ -5, -5, -5 }, white, bright)
 lighton = true
 endIf
 if c.a and lighton then
 removeLight(light)
 lighton = false
 endIf
 rotateObject(ball, { 0, 1, 0 }, 1.0)
 drawObjects()
 printAt(0, 0, "Press X to switch on the light")
 printAt(0, 1, "Press A to switch off the light")
 update()
repeat

41

Associated Commands

and, else, endIf, if, or, then

42

array

Purpose

Create an array of the integer type

Description

Defines a table of variables Can be used within a structure definition or standalone. Default array
type is integer.

Syntax
struct name
 array field1
 ...
 typen fieldn
endStruct

Arguments

name name of the structure

field1 name of the first field

fieldn name of the last field

typen type of the last field

Example
// Define a property of a structure type as an array
struct person
 string name
 int age
 float height
 array interests[3]
endStruct

// Define an integer array of 10 elements
array data[10]

Associated Commands

array, int, float, endStruct, string, struct, vector

43

break

Purpose

Break out of a loop early

Description

Stop a loop from repeating before the exit condition is met

Syntax
while condition loop ... break ... repeat // Loop while condition is true or BREAK is executed

Arguments

condition boolean condition that stops the loop when false

Example
loop
 c = controls(0)
 printAt(0,0, "Press A to exit program")
 if c.a then
 break
 endIf
 update()
repeat

Associated Commands

for, repeat, step, to, while

44

else

Purpose

Conditionally execute a block of code when the condition is false

Description

Used to execute a block of code if the condition in the if statement is not met

Syntax
if condition then ... else ... endIf // if condition is met execute first ... otherwise execute second ...

Arguments

condition condition to be tested. This can be a compound condition using AND and OR

Example
limit = 5
y = 0

for i = 0 to 11 loop
 if i < limit then
 printAt(0, y, "Number: ", i, " is less than ", limit)
 else
 if i == limit then
 printAt(0, y, "Number: ", i, " is equal to ", limit)
 else
 printAt(0, y, "Number: ", i, " is more than ", limit)
 endif
 endif
repeat

update()
sleep(5)

Associated Commands

and, else, endIf, if, or, then

45

endIf

Purpose

Marks the end of a condtional code block

Description

This ends the conditional if statement and returns to unconditional execution

Syntax
if condition then ... else ... endIf // if condition is met execute first ... otherwise execute second ...

Arguments

condition condition to be tested. This can be a compound condition using AND and OR

Example
gsize = 64
landscape = createterrain(gsize, 1)
height = 0
colour = white
for x = 0 to gsize loop
 for y = 0 to gsize loop
 d = distance({ x, y }, { gsize / 2, gsize / 2 })
 if d > 24 then // sea level
 height = 0
 colour = blue
 else
 if d > 18 then // beach
 height = 1
 colour = yellow
 else // hills
 height = rnd(2) + 1
 colour = green
 endIf
 endIf
 setTerrainPoint(landscape, x, y, height, colour)
 repeat
repeat
setCamera({ gsize / 2, 50, gsize / 2 }, { gsize / 2.0, 0, gsize / 2.00001 })
setAmbientlight({ 0.5, 0.5, 0.5 })
island = placeObject(landscape, { gsize / 2, 0, gsize / 2 }, { 1, 1, 1 })
loop
 c = controls(0) // rotate using joysticks
 rotateObject(island, { 1, 0, 0 }, c.ly)

46

 rotateObject(island, { 0, 0, 1 }, c.lx)
 rotateObject(island, { 0, 1, 0 }, c.rx)
 drawObjects()
 update()
repeat

Associated Commands

and, else, if, or, then

47

endStruct

Purpose

End a structured variable definition

Description

Marks the end of a stuctured variable definition

Syntax
struct name
 type1 field1
 ...
 typen fieldn
endStruct

Arguments

name name of the structure

field1 name of the first field

type1 type of the first field

fieldn name of the last field

typen type of the last field

Example
struct shape
 string name
 int sides
 int size
 vector pos
 int col
endStruct

shape shapes[3]
shapes[0] = [.name = "triangle", .sides=3, .size=150, .pos = { 400, 150 }, .col = red]
shapes[1] = [.name = "square", .sides=4, .size=150, .pos = { 400, 500 }, .col = yellow]
shapes[2] = [.name = "pentagon", .sides=5, .size=150, .pos = { 800, 150 }, .col = blue]
shapes[3] = [.name = "hexagon", .sides=6, .size=150, .pos = { 800, 500 }, .col = green]

loop
 clear()
 printat(0, 0, "Press A to show labels")
 c = controls(0)

48

 for i = 0 to 4 loop
 drawShape(shapes[i], c.a)
 repeat
 update()
repeat

function drawShape(s, label)
 circle(s.pos.x, s.pos.y, s.size, s.sides, s.col, 0)
 if label then
 drawText(s.pos.x - s.size/2, s.pos.y, s.size / 5, black, s.name)
 endIf
return void

Associated Commands

array, int, float, string, struct, vector

49

float

Purpose

Initialise a floating point variable

Description

Defines a variable as being of the float (floating point) type.

Syntax
struct name
 field1 float
 ...
 fieldn typen
endStruct

Arguments

name name of the structure

field1 name of the first field

fieldn name of the last field

typen type of the last field

Example
// Define a float variable within a structure definition
struct person
 string name
 int age
 float height
 array interests[3]
endStruct

// Initialise a float array of ten elements
float num[10]

Associated Commands

array, int, float, endStruct, string, struct, vector

50

for

Purpose

Repeat a section of code for a specfic number of times

Description

The loop is executed until the value of the loop index variable goes from the start value to one step
before the end value in increments of step

Syntax
for index = start to end loop ... repeat // Loop over values

for index = start to end step amount loop ... repeat // Loop over values with step

Arguments

index loop index variable

start start value of index

end end value of index (loop is not executed with this value)

amount amount to change index variable (default is one)

Example
// Draw 100 random boxes
clear()
for i = 1 to 100 loop
 // Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 x = random(gWidth())
 y = random(gHeight())
 width = random(gWidth() / 4)
 height = random(gHeight() / 4)
 outline = random(2)
 box(x, y, width, height, col, outline)
 update()
repeat
// Wait 3 seconds
sleep(3)

51

Associated Commands

for, repeat, step, to, while

52

function

Purpose

Create a user defined function

Description

Allows the user to create their own functions. This allows code to be reused and makes it easier to
read and maintain

Syntax
function name() ... return value // function with no arguments

function name(argument1, ... argumentn) ... return value // function with n arguments

Arguments

name name of the function

argument1 first parameter of the function

argumentn last parameter of the function

value return value of the function (void if no value is returned)

Example
for size = 1 to 200 step 1 loop
 clear()
 centreText("Hello World", size)
 update()
repeat

// Centre a text string on the screen
function centreText(message, size)
 textSize(size)
 tw = textWidth(message)
 drawText((gwidth() - tw) / 2, (gheight() - size) / 2, size, white, message)
return void

53

Associated Commands

function, return, void

54

if

Purpose

Conditionally execute a block of code when condition is true

Description

Execute a block of code only if the specified condition is true (1)

Syntax
if condition then ... endIf // ... is executed ONLY if condition is met

if condition then ... else ... endIf // if condition is met execute first ... otherwise execute second ...

Arguments

condition condition to be tested. This can be a compound condition using AND and OR

Example
setcamera({0, 10, 10 }, { 0, 0, 0 })
bright = 50
light = worldLight({ -5, -5, -5 }, white, bright)
lighton = true
ballmodel = loadModel("Kat/Discoball")
ball = placeObject(ballmodel, { 0, 0, 0 }, { 10, 10, 10 })
loop
 c = controls(0)
 if c.x and not lighton then
 light = worldLight({ -5, -5, -5 }, white, bright)
 lighton = true
 endIf
 if c.a and lighton then
 removeLight(light)
 lighton = false
 endIf
 rotateObject(ball, { 0, 1, 0 }, 1.0)
 drawObjects()
 printAt(0, 0, "Press X to switch on the light")
 printAt(0, 1, "Press A to switch off the light")
 update()
repeat

55

Associated Commands

and, else, endIf, if, or, then

56

int

Purpose

Create an integer variable

Description

Create a variable of the integer type. Can also be used as an array definition and within structure
definitions.

Syntax
struct name
 int field1
 ...
 typen fieldn
endStruct

Arguments

name name of the structure

field1 name of the first field

fieldn name of the last field

typen type of the last field

Example
struct shape
 string name
 int sides
 int size
 vector pos
 int col
endStruct

shape shapes[3]
shapes[0] = [.name = "triangle", .sides=3, .size=150, .pos = { 400, 150 }, .col = red]
shapes[1] = [.name = "square", .sides=4, .size=150, .pos = { 400, 500 }, .col = yellow]
shapes[2] = [.name = "pentagon", .sides=5, .size=150, .pos = { 800, 150 }, .col = blue]
shapes[3] = [.name = "hexagon", .sides=6, .size=150, .pos = { 800, 500 }, .col = green]

loop
 clear()
 printAt(0,0,"Press A to show labels")
 c = controls(0)
 for i = 0 to 4 loop

57

 drawShape(shapes[i], c.a)
 repeat
 update()
repeat

function drawShape(s, label)
 circle(s.pos.x, s.pos.y, s.size, s.sides, s.col, 0)
 if label then
 drawText(s.pos.x - s.size/2, s.pos.y, s.size / 5, black, s.name)
 endIf
return void

Associated Commands

array, int, float, endStruct, string, struct, vector

58

loop

Purpose

Repeat a section of code

Description

Repeat a section of code a specified number of times or until a condition is met (or forever)

Syntax
loop ... repeat // Loop forever

while condition loop ... repeat // Loop while condition is true

for index = start to end loop ... repeat // Loop over values

for index = start to end step amount loop ... repeat // Loop over values with step

Arguments

condition boolean condition that stops the loop when false

index loop index variable

start start value of index

end end value of index (loop is not executed with this value)

amount amount to change index variable

Example
// Draw 100 random boxes
clear()
for i = 1 to 100 loop
 // Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 x = random(gWidth())
 y = random(gHeight())
 width = random(gWidth() / 4)
 height = random(gHeight() / 4)
 outline = random(2)
 box(x, y, width, height, col, outline)
 update()
repeat
// Wait 3 seconds
sleep(3)

59

Associated Commands

for, repeat, step, to, while

60

not

Purpose

Negate a condition

Description

Execute a block of code only if the specified condition is false (0)

Syntax
if not condition then ... endIf // ... is executed ONLY if condition is not met

if not condition then ... else ... endIf // if condition is not met execute first ... otherwise execute second ...

Arguments

condition condition to be tested. This can be a compound condition using AND and OR

Example
setCamera({0, 10, 10 }, { 0, 0, 0 })
bright = 50
light = worldLight({ -5, -5, -5 }, white, bright)
lighton = true
ballmodel = loadModel("Kat/Discoball")
ball = placeObject(ballmodel, { 0, 0, 0 }, { 10, 10, 10 })

loop
 c = controls(0)
 if c.x and not lighton then
 light = worldLight({ -5, -5, -5 }, white, bright)
 lighton = true
 endIf
 if c.a and lighton then
 removeLight(light)
 lighton = false
 endIf
 rotateObject(ball, { 0, 1, 0 }, 1.0)
 drawObjects()
 printAt(0, 0, "Press X to switch on the light")
 printAt(0, 1, "Press A to switch off the light")
 update()
repeat

61

Associated Commands

and, else, endIf, if, or, then

62

or

Purpose

Specifies alternate condition

Description

The resulting condition is true if one of the conditions are true

Syntax
if condition1 or condition2 then ... endIf // ... is executed either condition is true

Arguments

condition1 first condition

condition2 second condtion

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 20, 20 })
rv = -0.5
gv = 0.5
bv = 0

loop
 clear()
 sc = getSpriteColour(ship)
 if sc.r > 1 or sc.r < 0 then
 rv = -rv
 endIf
 if sc.b > 1 or sc.b < 0 then
 gv = -gv
 endIf
 setSpriteColourSpeed(ship, { rv, gv, bv, 0 })
 updateSprites()
 drawSprites()
 update()
repeat

63

Associated Commands

and, else, endIf, if, or, then

64

repeat

Purpose

End of a loop or repeated section of code

Description

Marks the end of a section of code to be repeated. Control is passed back to the previous LOOP
keyword. The loop is repeated a specified number of times or until a condition is met (or forever)

Syntax
loop ... repeat // Loop forever

while condition loop ... repeat // Loop while condition is true

for index = start to end loop ... repeat // Loop over values

for index = start to end step amount loop ... repeat // Loop over values with step

Arguments

condition boolean condition that stops the loop when false

index loop index variable

start start value of index

end end value of index (loop is not executed with this value)

amount amount to change index variable (default is one)

Example
// Draw 100 random boxes
clear()
for i = 1 to 100 loop
 // Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 x = random(gWidth())
 y = random(gHeight())
 width = random(gWidth() / 4)
 height = random(gHeight() / 4)
 outline = random(2)
 box(x, y, width, height, col, outline)
 update()
repeat
// Wait 3 seconds
sleep(3)

65

Associated Commands

for, repeat, step, to, while

66

return

Purpose

Return a value from a user defined function

Description

Returns a value from a function and resumes execution from the point where the function was
called

Syntax
function name() ... return value // function with no arguments

function name(argument1, ... argumentn) ... return value // function with n arguments

Arguments

name name of the function

argument1 first parameter of the function

argumentn last parameter of the function

value return value of the function (void if no value is returned)

Example
y = 0
for i = 1 to 11 loop
 square = calculateSquare(i)
 printAt(0, y, square)
 y += 1
repeat

update()
sleep(3)

function calculateSquare(num)
 num *= num
return num

67

Associated Commands

function, return, void

68

step

Purpose

Specifies the increment value of the loop index variable

Description

The loop is executed until the value of the loop index variable goes from the start value to one step
before the end value in increments of step

Syntax
for index = start to end step amount loop ... repeat // Loop over values with step

Arguments

index loop index variable

start start value of index

end end value of index (loop is not executed with this value)

amount amount to change index variable (default is one)

Example
clear()
radians(true)
centre = { gwidth() / 2, gHeight() / 2 }
for angle = 0 to 2 * pi step 0.005 loop
 col = { random(101) / 100, random(101) / 100, random(101) / 100, 1.0 }
 result = sinCos(angle)
 point = { 600 * result.y + centre.x, 300 * result.x + centre.y }
 line(centre, point, col)
 repeat
update()
sleep(3)

69

Associated Commands

for, repeat, step, to, while

70

string

Purpose

Create a string variable

Description

Initialises a variable of the string type. Can be used to initialise an array or within a structure
definition

Syntax
struct name
 string field1
 ...
 typen fieldn
endStruct

Arguments

name name of the structure

field1 name of the first field

fieldn name of the last field

typen type of the last field

Example
struct shape
 string name
 int sides
 int size
 vector pos
 int col
endStruct

shape shapes[3]
shapes[0] = [.name = "triangle", .sides=3, .size=150, .pos = { 400, 150 }, .col = red]
shapes[1] = [.name = "square", .sides=4, .size=150, .pos = { 400, 500 }, .col = yellow]
shapes[2] = [.name = "pentagon", .sides=5, .size=150, .pos = { 800, 150 }, .col = blue]
shapes[3] = [.name = "hexagon", .sides=6, .size=150, .pos = { 800, 500 }, .col = green]

loop
 clear()
 printAt(0, 0, "Press A to show labels")
 c = controls(0)
 for i = 0 to 4 loop

71

 drawShape(shapes[i], c.a)
 repeat
 update()
repeat

function drawShape(s, label)
 circle(s.pos.x, s.pos.y, s.size, s.sides, s.col, 0)
 if label then
 drawText(s.pos.x - s.size/2, s.pos.y, s.size / 5, black, s.name)
 endIf
return void

Associated Commands

array, int, float, endStruct, string, struct, vector

72

struct

Purpose

Create a structured variable type

Description

Allows the user to create their own complex variable types. This allows the grouping of related
information into a single variable

Syntax
struct name
 type1 field1
 ...
 typen fieldn
endStruct

Arguments

name name of the structure

field1 name of the first field

type1 type of the first field

fieldn name of the last field

typen type of the last field

Example
struct shape
 string name
 int sides
 int size
 vector pos
 int col
endStruct

shape shapes[3]
shapes[0] = [.name = "triangle", .sides=3, .size=150, .pos = { 400, 150 }, .col = red]
shapes[1] = [.name = "square", .sides=4, .size=150, .pos = { 400, 500 }, .col = yellow]
shapes[2] = [.name = "pentagon", .sides=5, .size=150, .pos = { 800, 150 }, .col = blue]
shapes[3] = [.name = "hexagon", .sides=6, .size=150, .pos = { 800, 500 }, .col = green]

loop
 clear()
 printAt(0, 0, "Press A to show labels")

73

 c = controls(0)
 for i = 0 to 4 loop
 drawShape(shapes[i], c.a)
 repeat
 update()
repeat

function drawshape(s, label)
 circle(s.pos.x, s.pos.y, s.size, s.sides, s.col, 0)
 if label then
 drawText(s.pos.x - s.size/2, s.pos.y, s.size / 5, black, s.name)
 endIf
return void

Associated Commands

array, int, float, endStruct, string, struct, vector

74

then

Purpose

Marks the end of a condition and the start of a block of conditional code

Description

Code after this is executed up to an ELSE or endIf statement if the condition is met

Syntax
if condition then ... endIf // ... is executed ONLY if condition is met

if condition then ... else ... endIf // if condition is met execute first ... otherwise execute second ...

Arguments

condition condition to be tested. This can be a compound condition using AND and OR

Example
setCamera({0, 10, 10 }, { 0, 0, 0 })
bright = 50
light = worldLight({ -5, -5, -5 }, white, bright)
lighton = true
ballmodel = loadModel("Kat/Discoball")
ball = placeObject(ballmodel, { 0, 0, 0 }, { 10, 10, 10 })

loop
 c = controls(0)
 if c.x and not lighton then
 light = worldLight({ -5, -5, -5 }, white, bright)
 lighton = true
 endIf
 if c.a and lighton then
 removeLight(light)
 lighton = false
 endIf
 rotateObject(ball, { 0, 1, 0 }, 1.0)
 drawObjects()
 printAt(0, 0, "Press X to switch on the light")
 printAt(0, 1, "Press A to switch off the light")
 update()
repeat

75

Associated Commands

and, else, endIf, if, or, then

76

to

Purpose

Separates the start and end values in a FOR loop

Description

The value before this is the start value of the index variable and the one after is the end value. The
loop is executed until the value of the loop index variable goes from the start value to one step
before the end value in increments of step

Syntax
for index = start to end loop ... repeat // Loop over values

for index = start to end step step loop ... repeat // Loop over values with step

Arguments

index loop index variable

start start value of index

end end value of index (loop is not executed with this value)

step amount to change index variable (default is one)

Example
// Draw 100 random boxes
clear()
for i = 1 to 100 loop
 // Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 x = random(gWidth())
 y = random(gHeight())
 width = random(gWidth() / 4)
 height = random(gHeight() / 4)
 outline = random(2)
 box(x, y, width, height, col, outline)
 update()
repeat
// Wait 3 seconds
sleep(3)

77

Associated Commands

for, repeat, step, to, while

78

vector

Purpose

Create a variable of the vector type

Description

Initialises a variable of the vector type. Can be used to initialise an array or within a structure
definition. The vector can have up to 4 dimensions (x, y, z and w / r, g, b and a)

Syntax
struct name
 vector field1
 ...
 typen fieldn
endStruct

Arguments

name name of the structure

field1 name of the first field

fieldn name of the last field

typen type of the last field

Example
struct shape
 string name
 int sides
 int size
 vector pos
 int col
endStruct

shape shapes[3]
shapes[0] = [.name = "triangle", .sides=3, .size=150, .pos = { 400, 150 }, .col = red]
shapes[1] = [.name = "square", .sides=4, .size=150, .pos = { 400, 500 }, .col = yellow]
shapes[2] = [.name = "pentagon", .sides=5, .size=150, .pos = { 800, 150 }, .col = blue]
shapes[3] = [.name = "hexagon", .sides=6, .size=150, .pos = { 800, 500 }, .col = green]

loop
 clear()
 printAt(0, 0, "Press A to show labels")
 c = controls(0)
 for i = 0 to 4 loop

79

 drawShape(shapes[i], c.a)
 repeat
 update()
repeat

function drawshape(s, label)
 circle(s.pos.x, s.pos.y, s.size, s.sides, s.col, 0)
 if label then
 drawText(s.pos.x - s.size/2, s.pos.y, s.size / 5, black, s.name)
 endIf
return void

Associated Commands

array, int, float, endStruct, string, struct, vector

80

void

Purpose

A value that indicates that a user defined function returns no value

Description

A special value that actually has “no value”

Syntax
function name() ... return void // function with no arguments

function name(argument1, ... argumentn) ... return void // function with n arguments

Arguments

name name of the function

argument1 first parameter of the function

argumentn last parameter of the function

Example
for size = 1 to 200 step 1 loop
 clear()
 centreText("Hello World", size)
 update()
repeat

// Centre a text string on the screen
function centreText(message, size)
 textSize(size)
 tw = textWidth(message)
 drawtext((gWidth() - tw) / 2, (gHeight() - size) / 2, size, white, message)
return void

81

Associated Commands

function, return, void

82

while

Purpose

Repeat a section of code

Description

Repeat a section of code until a condition is met

Syntax
while condition loop ... repeat // Loop while condition is true

Arguments

condition boolean condition that stops the loop when false

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = []
for i = 0 to 2 loop
 ship[i] = createSprite()
 setSpriteImage(ship[i], image)
 setSpriteScale(ship[i], { 5, 5 })
 setSpriteCollisionShape(ship[i], SHAPE_TRIANGLE, 25, 25, 180)
 ship[i].show_collision_shape = true
repeat

setSpriteRotation(ship[0], 270)
setSpriteSpeed(ship[0], { 240, 0 })
setSpriteSpeed(ship[1], { 0, 120 })
setSpriteColour(ship[1], { 0, 0, 1, 1 })
setSpriteLocation(ship[0], { 0, gHeight() / 2 })
setSpriteLocation(ship[1], { gWidth() / 2, 0 })

collide = false
while !collide loop
 clear()
 updateSprites()
 drawSprites()
 update()
 collide = detectSpriteCollision(ship[0], ship[1])
repeat

83

Associated Commands

for, repeat, step, to, while

84

Operators

85

Symbols and Operators

Operators are tools to perform operations on a number. Some operators you might recognise
already are +, -, <, etc. Operators are used to affect one or more items. For example, we might
compare two items using operators, or add two items together.

Priority

Some operators have a higher priority than others. This means they happen first in a line of code
even if they do not appear first. For example:

a = 10 * 30 + 5

In this example, the multiply will happen before the addition, giving a result of 350. This is
because the multiplication operation has a higher priority than addition.

When operators have the same priority, they happen in order of appearance. For example:

a = 10 + 30 - 5

In this example, the addition happens before the subtraction because it appears first.

Below are all of the operators in FUZE4 Nintendo Switch listed in order of priority. Higher
priority operators happen before lower. Operators in the same group have the same priority.

Group 0 - Brackets

Brackets behave in a special way. Anything inside brackets will take place first, even if the
operations within the brackets have a lower priority than operations outside them. Of course,
operations within the brackets still behave in terms of their normal priority.

() Parentheses - Used to change the order of evaluation. Operations inside parentheses will
happen before operations on the outside. Parentheses are also used to set the arguments of a
function call.

[] Square Brackets - Used with arrays to define a number of elements, or to index into an array.

{ } Curly Brackets - Used to define a vector. Empty curly brackets sets default values of { 0, 0, 0, 0 }.

Group 1 - Highest Priority

NOT, ! Not - Performs the logical inversion on a given value. False becomes true, true becomes
false. Either NOT or ! can be used.

BNOT, ~ Binary Not - Performs the Not operation on a bitwise basis. Either BNOT or ~ can be
used.

Group 2

* Multiply - Used to multiply a value by another.

86

/ Divide - Used to divide a value by another.

MOD, % Modulo - Used to give the remainder of a division. Either MOD or % can be used.

Group 3

+ Add - Used to add two values together. Also used to join string content together.

- Minus - Used to subtract a value from another. Also used as a sign to indicate a negative number.

<< Shift Left - Used to perform the bit shift operation to the left. Effectively multiplies a value by
two for the number of bits shifted.

>> Shift Right - Used to perform the bit shift operation to the right. Effectively divides a value by
two for the number of bits shifted.

& Binary And - Performs the and operation on a bitwise basis.

| Binary Or - Performs the or operation on a bitwise basis.

^ Exclusive Or - Used to perform the exclusive or operation

Group 4

== Double Equals - Used to compare two values and determine whether they are exactly equal to
each other.

< Less Than - Used to compare two values and determine whether one is less than the other.

<= Less Than or Equal To - Used to compare to values and determine whether one is less than or
equal to the other.

> Greater Than - Used to compare two values and determine whether one is greater than the
other.

>= Greater Than or Equal To - Used to compare two values and determine whether one is greater
than or equal to the other.

!= Not Equal To - Used to compare two values and determine whether they are not equal to each
other.

Group 5

AND Logical And - Used to compare two values to determine whether they are both true.

Group 6

OR Logical Or - Used to compare two values to determine whether either are true.

Group 7 - Lowest Priority

= Assign - Used to assign a value to a variable.

87

+= Plus Equals - Used to perform an addition on the contents of a variable.

-= Minus Equals - Used to perform a subtraction on the contents of a variable.

*= Times Equals - Used to perform a multiplication on the contents of a variable.

/= Divide Equals - Used to perform a division on the contents of a variable.

88

add

Purpose

Addition operator +

Description

Finds the sum of the numbers either side of the + operator. The result is the first number
increased by the second

Syntax
result = number1 + number2

Arguments

result sum of number1 and number2

number1 first number

number2 second number

Example
answer = "0"
correct = 2 + 2
while int(answer) != correct loop
 answer = input("What is 2 + 2?", false)
 if int(answer) != correct then
 print("Sorry that is incorrect. Please try again")
 for i = 0 to 200 loop
 update()
 repeat
 endIf
repeat
print("That is correct!")
sleep(3)

Associated Commands

add, divide, modulus, multiply, subtract

89

divide

Purpose

Division operator /

Description

This is the opposite of the multiplication operator. The result is the number of times you can
subtract the first number from the second

Syntax
result = number1 / number2

Arguments

result number1 divided by number2

number1 first number

number2 second number

Example
message = "Hello World"
for size = 1 to 200 step 1 loop
 clear()
 textSize(size)
 tw = textWidth(message)
 drawText((gWidth() - tw) / 2, (gHeight() - size) / 2, size, white, message)
 update()
repeat

90

Associated Commands

add, divide, modulus, multiply, subtract

91

modulus

Purpose

Modulus operator %

Description

Finds the remainder when one number is dived by another

Syntax
result = number1 % number2

Arguments

number1 first number

number2 second number

result the remainder when number1 is divided by number2

Example
textsize(100)
for y = 0 to theight() loop
 for x = 0 to twidth() loop
 printAt(x, y, (x + 1) % 10)
 update()
 repeat
repeat
for i = 1 to 100 loop
 update()
repeat

92

Associated Commands

add, divide, modulus, multiply, subtract

93

multiply

Purpose

Multiplication operator *

Description

Finds the product of the numbers either side of the * operator. The result is the first number
added to itself the second number of times.

Syntax
result = number1 * number2

Arguments

result product of number1 and number2

number1 first number

number2 second number

Example
answer = "0"
correct = 6 * 7
while (int(answer) != correct) loop
 clear()
 answer = input("What is 6 times 7?", false)
 if (int(answer) != correct) then
 print ("Sorry that is incorrect. Please try again")
 for i = 0 to 200 loop
 update()
 repeat
 endIf
repeat
print("That is correct!")
sleep(3)

Associated Commands

add, divide, modulus, multiply, subtract

94

subtract

Purpose

Subtraction operator -

Description

Finds the difference between the numbers either side of the - operator. The result is the first
number decreased by the second

Syntax
result = number1 - number2

Arguments

result difference between number1 and number2

number1 first number

number2 second number

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = []
for i = 0 to 4 loop
 enemy[i] = createSprite()
 setSpriteImage(enemy[i], image)
 setSpriteAnimation(enemy[i], 0, 4, 20)
 setSpriteLocation(enemy[i], { (i % 2) * 400 + 400, int(i / 2) * 300 + 200 })
 setSpriteScale(enemy[i], { 4, 4 })
repeat
camera = getSpriteCamera()
rotation = getSpriteCameraRotation()
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Camera position: x = ", camera.x, " y = ", camera.y, " z = ", camera.z, " rotation: ", rotation)
 printAt(0, 1, "Use left joypad to pan, right joypad to zoom/rotate")
 if c.up then
 camera.y -= 5
 endIf
 if c.down then
 camera.y += 5
 endIf
 if c.left then
 camera.x -= 5
 endIf
 if c.right then
 camera.x += 5
 endIf
 if c.x then
 camera.z += 0.05
 endIf
 if c.b then
 camera.z -= 0.05
 endIf
 if c.y then
 rotation -= 0.5
 endIf
 if c.a then

95

 rotation += 0.5
 endIf
 setSpriteCamera(camera.x, camera.y, camera.z)
 setSpriteCameraRotation(rotation)
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

add, divide, modulus, multiply, subtract

96

and

Purpose

Bitwise and operator &

Description

Sets bits in the result where both equivalent bits are set in the number either side of the operator

Syntax
result = number1 & number2

Arguments

number1 first binary number

number2 second binary number

result resulting number with just the bits that are set in number1 and number2

Example
loop
 clear()
 textSize(50)
 byte1 = 123
 byte2 = 234
 printAt(0, 0, "byte1 = ", bin2str(byte1))
 printAt(0, 1, "byte2 = ", bin2str(byte2))
 printAt(0, 2, "byte1 & byte2 = ", bin2str(byte1 & byte2))
 update()
repeat

function bin2str(byte)
 result = ""
 for i = 0 to 8 loop
 bit = byte & 1
 if bit then
 result = "1" + result
 else
 result = "0" + result
 endIf
 byte = byte >> 1
 repeat
return result

Associated Commands

97

and, not, or, shiftLeft, shiftRight, xor

98

not

Purpose

Bitwise not operator ~

Description

Toggles bits in a binary number so that 1s become 0s and 0s become 1s

Syntax
result = ~number

Arguments

number binary number

result result when you toggle all of the bits in number

Example
loop
 textsize(50)
 byte1 = 123
 byte2 = 234
 printat(0, 0, "byte1 = ", bin2str(byte1))
 printat(0, 1, "byte2 = ", bin2str(byte2))
 printat(0, 2, "~byte1 = ", bin2str(~byte1))
 printat(0, 3, "~byte2 = ", bin2str(~byte2))
 update()
repeat

function bin2str(byte)
 result = ""
 for i = 0 to 8 loop
 bit = byte & 1
 if bit then
 result = "1" + result
 else
 result = "0" + result
 endIf
 byte = byte >> 1
 repeat
return result

Associated Commands

and, not, or, shiftLeft, shiftRight, xor

99

100

or

Purpose

Bitwise or operator |

Description

Performs the OR operation on a bitwise basis. Checks one bit against another and returns true if
either are true

Syntax
result = number1 | number2

Arguments

number1 first binary number

number2 second binary number

result resulting number with the bits that are set in number1 or number2

Example
loop
 textsize(50)
 byte1 = 123
 byte2 = 234
 printAt(0, 0, "byte1 = ", bin2str(byte1))
 printAt(0, 1, "byte2 = ", bin2str(byte2))
 printAt(0, 2, "byte1 | byte2 = ", bin2str(byte1 | byte2))
 update()
repeat

function bin2str(byte)
 result = ""
 for i = 0 to 8 loop
 bit = byte & 1
 if bit then
 result = "1" + result
 else
 result = "0" + result
 endIf
 byte = byte >> 1
 repeat
return result

Associated Commands

101

and, not, or, shiftLeft, shiftRight, xor

102

shiftLeft

Purpose

Bit shift left operator <<

Description

Shift all of the bits in a binary number to the left the specified number of times. The new rightmost
bits are set to zero. Bitshift left has the effect of multipling the value of the binary number by 2

Syntax
result = number1 << number2

Arguments

number1 first binary number

number2 number of bits to shift

result resulting number with the bits of number1 shifted left number2 times

Example
loop
 textsize(50)
 byte1 = 123
 byte2 = 234
 printAt(0, 0, "byte1 = ", bin2str(byte1))
 printAt(0, 1, "byte2 = ", bin2str(byte2))
 printAt(0, 2, "byte1 << 1 = ", bin2str(byte1 << 1))
 update()
repeat

function bin2str(byte)
 result = ""
 for i = 0 to 8 loop
 bit = byte & 1
 if bit then
 result = "1" + result
 else
 result = "0" + result
 endIf
 byte = byte >> 1
 repeat
return result

Associated Commands

103

and, not, or, shiftLeft, shiftRight, xor

104

shiftRight

Purpose

Bit shift right operator >>

Description

Shift all of the bits in a binary number to the right the specified number of times. The new leftmost
bits are set to zero

Syntax
result = number1 >> number2

Arguments

number1 first binary number

number2 number of bits to shift

result resulting number with the bits of number1 shifted right number2 times

Example
loop
 textsize(50)
 byte1 = 123
 byte2 = 234
 printAt(0, 0, "byte1 = ", bin2str(byte1))
 printAt(0, 1, "byte2 = ", bin2str(byte2))
 printAt(0, 2, "byte1 >> 1 = ", bin2str(byte1 >> 1))
 update()
repeat

function bin2str(byte)
 result = ""
 for i = 0 to 8 loop
 bit = byte & 1
 if bit then
 result = "1" + result
 else
 result = "0" + result
 endIf
 byte = byte >> 1
 repeat
return result

Associated Commands

105

and, not, or, shiftLeft, shiftRight, xor

106

xor

Purpose

Bitwise exclusive or operator ^

Description

Sets bits in the result where equivalent bits are different in the number either side of the operator

Syntax
result = number1 ^ number2

Arguments

number1 first binary number

number2 second binary number

result resulting number with the bits set that are different between number1 and number2

Example
loop
 textsize(50)
 byte1 = 123
 byte2 = 234
 printAt(0, 0, "byte1 = ", bin2str(byte1))
 printAt(0, 1, "byte2 = ", bin2str(byte2))
 printAt(0, 2, "byte1 ^ byte2 = ", bin2str(byte1 ^ byte2))
 update()
repeat

function bin2str(byte)
 result = ""
 for i = 0 to 8 loop
 bit = byte & 1
 if bit then
 result = "1" + result
 else
 result = "0" + result
 endIf
 byte = byte >> 1
 repeat
return result

Associated Commands

107

and, not, or, shiftLeft, shiftRight, xor

108

equals

Purpose

Equals operator ==

Description

This is true if the value of first expression is equal to the value of the second

Syntax
result = expression1 == expression2

Arguments

result true if value of expression1 is equal to the value of expression2

expression1 first expression

expression2 second expression

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = []
for i = 0 to 4 loop
 enemy[i] = createSprite()
 setSpriteImage(enemy[i], image)
 setSpriteAnimation(enemy[i], image, 0, 4, 20)
 setSpriteLocation(enemy[i], { (i % 2) * 400 + 400, int(i / 2) * 300 + 200 })
 setSpriteScale(enemy[i], { 4, 4 })
repeat

camera = getSpriteCamera()
rotation = getSpriteCameraRotation()

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Camera posotion: x = ", camera.x, " y = ", camera.y, " z = ", camera.z, " rotation: ", rotation)
 printAt(0, 1, "Use left joypad to pan, right joystick to zoom/rotate")
 if c.up then
 camera.y -= 5
 endIf
 if c.down then
 camera.y += 5
 endIf
 if c.left then
 camera.x -= 5
 endIf
 if c.right then
 camera.x += 5
 endIf
 if c.x then
 camera.z += 0.05
 endIf
 if c.b then
 camera.z -= 0.05
 endIf
 if c.y then
 rotation -= 0.5
 endIf
 if c.a then

109

 rotation += 0.5
 endIf
 setSpriteCamera(camera.x, camera.y, camera.z)
 setSpriteCameraRotation(rotation)
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

equals, lessThan, greaterThan, lessThanEquals, greaterThanEquals, notEquals

110

greaterThan

Purpose

Greater than operator >

Description

This is true if the value of first expression is greater than the value of the second

Syntax
result = expression1 > expression2

Arguments

result true if value of expression1 is greater than value of expression2

expression1 first expression

expression2 second expression

Example
gsize = 64
landScape = createTerrain(gsize, 1)
height = 0
colour = white
for x = 0 to gsize loop
 for y = 0 to gsize loop
 d = distance ({ x, y }, { gsize / 2, gsize / 2 })
 if d > 24 then // sea level
 height = 0
 colour = blue
 else
 if (d > 18) then // beach
 height = 1
 colour = yellow
 else // hills
 height = rnd(2) + 1
 colour = green
 endIf
 endIf
 setTerrainPoint(landscape, x, y, height, colour)
 repeat
repeat

setCamera({ gsize / 2, 50, gsize / 2 }, { gsize / 2.0, 0, gsize / 2.00001 })
setAmbientLight({ 0.5, 0.5, 0.5 })

111

island = placeObject(landscape, { gsize / 2, 0, gsize / 2 }, { 1, 1, 1 })

loop
 c = controls(0) // rotate using joysticks
 rotateObject(island, { 1, 0, 0 }, c.ly)
 rotateObject(island, { 0, 0, 1 }, c.lx)
 rotateObject(island, { 0, 1, 0 }, c.rx)
 drawObjects()
 update()
repeat

Associated Commands

equals, lessThan, greaterThan, lessThanEquals, greaterThanEquals, notEquals

112

greaterThanEquals

Purpose

Greater than or equals operator >=

Description

This is true if the value of first expression is greater than or equal to the value of the second

Syntax
result = expression1 >= expression2

Arguments

result true if value of expression1 is greater than or equal to value of expression2

expression1 first expression

expression2 second expression

Example
cb = loadModel("Kat/Colin")
pointLight({ 0.5, 1.3, 2 }, white, 4)
setAmbientLight({ 0.5, 0.5, 0.5 })
colin = placeObject(cb, { 0, 0, 0 }, { 1, 1, 1 })
setCamera({ 0, 10, 10 }, { 0, 5, 0 })
animID = 7 // the robot
animlength = animationLength(colin, animID)
animframe = 0

loop
 clear()
 animframe = animframe + 1 / 60
 if animframe >= animlength then
 animframe = 0
 endIf
 updateAnimation(colin, animID, animframe)
 drawObjects()
 printAt(0, 0, "length: ", animlength, " frame: ", animframe)
 update()
repeat

113

Associated Commands

equals, lessThan, greaterThan, lessThanEquals, greaterThanEquals, notEquals

114

lessThan

Purpose

Less than operator <

Description

This is true if the value of first expression is less than the value of the second

Syntax
result = expression1 < expression2

Arguments

result true if value of expression1 is less than value of expression2

expression1 first expression

expression2 second expression

Example
hour="00"
minute="00"
second="00"
size=100.0
textsize(size)
loop
 clear()
 c = clock()
 if c.hour < 10 then
 hour= "0" + str(c.hour)
 else
 hour= str(c.hour)
 endIf
 if c.minute < 10 then
 minute = "0" + str(c.minute)
 else
 minute=str(c.minute)
 endIf
 if (c.second < 10) then
 second = "0" + str(c.second)
 else
 second = str(c.second)
 endIf
 now = hour + ":" + minute + ":" + second
 tw = textWidth(now)

115

 drawText((gWidth() - tw) / 2, (gHeight() - size) / 2, size, white, now)
 update()
repeat

Associated Commands

equals, lessThan, greaterThan, lessThanEquals, greaterThanEquals, notEquals

116

lessThanEquals

Purpose

Less than or equal operator <=

Description

This is true if the value of first expression is less than or equal to the value of the second

Syntax
result = expression1 <= expression2

Arguments

result true if value of expression1 is less or equal to the value of expression2

expression1 first expression

expression2 second expression

Example
pos = { 960, 540 }
vel = { 0, 0 }
col = { 1, 0, 0, 1 }
rt = createImage(1920, 1080, true, image_rgb)
loop
 c = controls(0)
 vel += { c.lx, -c.ly }
 pos += vel
 vel *= 0.95

 if col.r > 0 and col.b <= 0 then
 col.r -= 0.01
 col.g += 0.01
 else
 if col.g > 0 then
 col.g -= 0.01
 col.b += 0.01
 else
 col.b -= 0.01
 col.r += 0.01
 endIf
 endIf

 setDrawTarget(rt)
 box(0, 0, 1920, 1080, { 0, 0, 0, 0.25 }, false)
 circle(pos.x, pos.y, 50, 32, col, false)

 setDrawTarget(framebuffer)
 clear()
 renderEffect(rt, framebuffer, fx_motionblur, [1 / 1920, 1 / 1080, vel.x / 2, vel.y / 2])

117

 update()
repeat

Associated Commands

equals, lessThan, greaterThan, lessThanEquals, greaterThanEquals, notEquals

118

notEquals

Purpose

Not equals operator !=

Description

This is true if the value of first expression is not equal to the value of the second

Syntax
result = expression1 != expression2

Arguments

result true if value of expression1 is not equal to the value of expression2

expression1 first expression

expression2 second expression

Example
radians(1)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gwidth() / 2, gheight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 4, 4 })
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick to control sprite")
 setSpriteSpeed(ship, { 480 * c.lx, -480 * c.ly })
 curpos = getSpriteLocation(ship)
 if(curpos != lastpos) then
 setSpriteRotation(ship, -pi / 2 + atan2(curpos.y - lastpos.y, curpos.x - lastpos.x))
 lastpos = curpos
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

119

Associated Commands

equals, lessThan, greaterThan, lessThanEquals, greaterThanEquals, notEquals

120

Command Reference

121

2D Graphics

122

box()

Purpose

Draw a box (rectangle)

Description

Draws a filled or outline box with the given width and height at the specified x and y coordinates
in the specified colour.

Syntax
box(x, y, width, height, colour, outline)

Arguments

x horizontal screen position in pixels

y vertical screen position in pixels

width width in pixels

height height in pixels

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

outline If true then only the outline is drawn otherwise the shape is filled.

Example
// Draw 100 random boxes
clear()
for i = 0 to 100 loop
 // Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 x = random(gWidth())
 y = random(gHeight())
 width = random(gWidth() / 4)
 height = random(gHeight() / 4)
 outline = random(2)
 box(x, y, width, height, col, outline)
 update()
repeat
// Wait 3 seconds
sleep(3)

123

Associated Commands

circle(), line(), triangle()

124

centreSpriteCamera()

Purpose

Centre the sprite camera

Description

Used the centre the sprite camera around a supplied position

Syntax
centreSpriteCamera(pos)

centreSpriteCamera(xpos, ypos)

Arguments

pos vector position of the centre point { x, y }

xpos float position of the centre point on the x axis

ypos float position of the centre point on the y axis

Example
image = loadImage("Untied Games/Shroom Hopper A")
spr = createSprite()
setSpriteImage(spr, img)
setSpriteAnimation(spr, 42, 49, 10)
setSpriteCamera(0, 0, 8)

centrePoint = { 0, 0 }

loop
 clear()
 updateSprites()
 j = controls(0)
 centrePoint += { -j.lx, j.ly }
 // centre sprite camera around { 0, 0 }
 // use left control stick to adjust centre point
 centreSpriteCamera(centrePoint)
 drawSprites()
 update()
repeat

125

Associated Commands

setSpriteCamera(), getSpriteCamera(), getSpriteCameraRotation(), setSpriteCameraRotation()

126

circle()

Purpose

Draw a circle

Description

Draws a filled or outline circle with the given radius at the specified x and y coordinates and in the
specified colour.

Syntax
circle(x, y, radius, vertices, colour, outline)

Arguments

x horizontal screen position in pixels

y vertical screen position in pixels

radius radius in pixels

vertices number of vertices in the circle (higher will be smoother)

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

outline If true then only the outline is drawn otherwise the shape is filled.

Example
clear()
for i = 1 to 100 loop
// Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 x = random(gWidth())
 y = random(gHeight())
 radius = random(gWidth() / 4)
 vertices = 32
 outline = random(2)
 circle(x, y, radius, vertices, col, outline)
 update()
repeat
// Wait 10 seconds
sleep(10)

127

Associated Commands

box(), line(), triangle()

128

collideMap()

Purpose

Used to cause sprites to interact with map collision box data.

Description

Receives a sprite handle and returns an array of structures detailing collision data.

Syntax
collide = detectMapCollision(sprite)

Arguments

sprite Handle of the sprite being collided

*collide.existBoolean value (true or false) to indicate whether a collision has occured

*collide.spritHandle of the sprite being collided

*collide.spritHandle of the sprite being collided

*collide.resolResolution vector of the given sprite

*collide.resolResolution vector of the given sprite

Example
// To view this map demo, please load the project "collideMap() Demo" from FUZE Programs.
// Maps must be stored in the project you wish to load them into.

img = loadImage("Untied Games/Bat and Ball ball")

plr = [
 .spr = createSprite(),
 .vel = {}
]

setSpriteImage(plr.spr, img)
setSpriteScale(plr.spr, { 1, 1 })

loadMap("map1")

setSpriteCamera(0, 0, 2)

loop
 centreSpriteCamera(0, 0)
 clear()
 updateSprites()

 c = controls(0)

129

 plr.vel += { c.lx, -c.ly } * 80
 plr.vel *= 0.87

 setSpriteSpeed(plr.spr, plr.vel)

 drawMapLayer(0)
 drawMapLayer(1)

 collision = collideMap(plr.spr)

 drawSprites()

 printAt(0, 0, "Move the ball using the left control stick")
 printAt(0, 2, "Collision exists: ")
 printAt(0, 4, "Collision Resolution Vector: ")

 if len(collision) > 0 then
 printAt(30, 2, collision[0].exists)
 printAt(30, 4, collision[0].resolution_a)
 endif

 update()
repeat

Associated Commands

130

collideSprites()

Purpose

Collides two sprites

Description

Syntax
c = collideSprites(spriteA, spriteB, resolve1, resolve2)

Arguments

spriteA handle of first sprite

spriteB handle of second sprite

resolve1 if true the first sprite can be moved by the collision

resolve2 if true the second sprite can be moved by the collision

c.exists true if collision occurred

c.a first sprite in the collision

c.b second sprite in the collision

*c.resolution_vector representing how sprite A was pushed during the collision

*c.resolution_vector representing how sprite B was pushed during the collision

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = []
for i = 0 to 2 loop
 ship[i] = createSprite(image)
 setSpriteImage(ship[i], image)
 setSpriteScale(ship[i], { 5, 5 })
 setSpriteCollisionShape(ship[i], SHAPE_TRIANGLE, 25, 25, 180)
 ship[i].show_collision_shape = true
repeat
setSpriteRotation(ship[0], 270)
setSpriteSpeed(ship[0], { 240, 0 })
setSpriteSpeed(ship[1], { 0, 120 })
setSpriteColour(ship[1], { 0, 0, 1, 1 })
setSpriteLocation(ship[0], { 0, gHeight() / 2 })
setSpriteLocation(ship[1], { gWidth() / 2, 0 })
while ship[0].x < gWidth() loop
 clear()

131

 updateSprites()
 collideSprites(ship[0], ship[1])
 drawSprites()
 update()
repeat

Associated Commands

detectSpriteCollision(), setSpriteCollisionShape()

132

copyImage()

Purpose

Create a copy of an image

Description

Creates a copy of an image with adjustable source region

Syntax
handle = copyImage(imageHandle, source)

Arguments

handle Variable which will store the new image

imageHandle Handle of the image to copy

source Vector describing the desired region to copy

Example
// load image to copy
img = loadImage("Ansimuz/CyberpunkStreetLayer0")
// create copy with region x = 50, y = 50, width = 100, height = 100
img_copy = copyImage(img, { 50, 50, 100, 100 })

// draw original image at top left of screen with a scale of 2
drawImage(img, 0, 0, 2)
// draw copied image region at centre of screen with a scale of 3
drawImage(img_copy, gwidth() / 2, 0, 3)

update()
sleep(3)

133

Associated Commands

clear(), createImage(), drawImage(), drawImageEx(), drawQuad(), drawSheet(), loadImage(),
update(), uploadImage()

134

copyShape()

Purpose

Copy a created shape

Description

Creates a copy of a supplied shape to be drawn with drawShape()

Syntax
newShape = copyShape(shape)

Arguments

newShape Handle which stores the newly copied shape

shape Handle which stores the shape to copy

Example

Associated Commands

createBox(), createCircle(), createCurve(), createLine(), createLineStrip(), createPoly(),
createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

135

createBox()

Purpose

Creates a box (rectangle) to be drawn with drawShape()

Description

Creates a box with centre origin to be drawn at the specified x and y location with the specified
width and height

Syntax
shape = createBox(x, y, width, height)

Arguments

shape Handle which stores the newly created shape

x Horizontal screen position in pixels

y Vertical screen position in pixels

width Width in pixels

height Height in pixels

Example
// draw a multicoloured rectangle on the screen
box_1 = createBox(gwidth() / 2, gheight() / 2, gwidth(), gheight())

setVertexColour(box_1, 0, bisque)
setVertexColour(box_1, 1, cyan)
setVertexColour(box_1, 2, fuzeblue)
setVertexColour(box_1, 3, fuzepink)

drawShape(box_1)
update()
sleep(3)

136

Associated Commands

copyShape(), createCircle(), createCurve(), createLine(), createLineStrip(), createPoly(),
createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

137

createCircle()

Purpose

Creates a circle to be drawn with drawShape()

Description

Creates a circle with centre origin to be drawn at the specified x and y location with the specified
radius and number of vertices

Syntax
shape = createCircle(x, y, radius, vertices)

Arguments

shape Handle to store the newly created circle

x Horizontal screen position of the circle

y Vertical screen position of the circle

radius Distance from the centre of the circle to the edge (in pixels)

vertices Number of vertices (points) making up the circle

Example
// draw a multicoloured circle on screen
shape_1 = createCircle(gwidth() / 2, gheight() / 2, 500, 360)

for i = 0 to 360 loop
 setVertexColour(shape_1, i, { random(1.0), random(1.0), random(1.0), 1 })
repeat

drawShape(shape_1)
update()
sleep(3)

Associated Commands

copyShape(), createBox(), createCurve(), createLine(), createLineStrip(), createPoly(),
createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

138

createCurve()

Purpose

Create a curve between points

Description

Creates a curve between any number of supplied points on screen to be drawn with drawShape()

Syntax
shape = createCurve(point1, point2, ... pointN)
shape = createCurve(points)

Arguments

shape Handle which stores the newly created curve

point1 Vector describing the position of the first point in the curve

point2 Vector describing the position of the second point in the curve

pointN Vector describing the position of the Nth point in the curve (any number of points can be
supplied)

points Array of vector points to draw the curve between

Example

Associated Commands

copyShape(), createBox(), createCircle(), createLine(), createLineStrip(), createPoly(),
createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

139

createImage()

Purpose

Create an image

Description

Create an image of the specified size and type which can then be drawn onto

Syntax
handle = createImage(width, height, filter, type)

Arguments

handle Variable which stores the desired image file

width Desired on-screen width in pixels

height Desired on-screen height in pixels

filter Sets filtering on (true) or off (false) - generally on for real images and off for pixel art

type The type of the image: image_rgb for 24 bits per pixel, image_rgba for 32bpp with alpha
channel, image_rgb_hdr for 48bpp, image_rgba_hdr for 64 bpp with alpha channel

Example
w = 200
// Create a tile
img = createImage(w, w, true, image_rgb)
setDrawTarget(img)
box(0, 0, w, w, red, 0)
box(0, w/2, w - 1, w / 2, white, 1)
line({ w / 2 }, { w / 2, w / 2 }, white)
// draw tiles on the screen
setDrawTarget(frameBuffer)
for y = 1 to gHeight() step w loop
 for x = 1 to gWidth() step w loop
 drawImage(img, x, y, 1)
 update()
 sleep(0.2)
 repeat
repeat
sleep(3)

140

Associated Commands

clear(), drawImage(), drawImageEx(), drawQuad(), drawSheet(), loadImage(), update(),
uploadImage()

141

createLine()

Purpose

Create a line

Description

Creates a line between two supplied points on screen to be drawn with drawShape()

Syntax
shape = createLine(x1, y1, x2, y2)

Arguments

shape Handle which stores the newly created line

x1 Horizontal screen position of the first point in the line

y1 Vertical screen position of the first point in the line

x2 Horizontal screen position of the second point in the line

y2 Vertical screen position of the second point in the line

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLineStrip(), createPoly(),
createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

142

createLineStrip()

Purpose

Create a series of lines between points

Description

Creates a line between any number of supplied points on screen to be drawn with drawShape()

Syntax
shape = createLineStrip(point1, point2, ... pointN)
shape = createLineStrip(points)

Arguments

shape Handle which stores the newly created shape

point1 Vector describing the position of the first point in the line

point2 Vector describing the position of the second point in the line

pointN Vector describing the position of the Nth point in the line (any number of points can be
supplied)

points Array of vector points to draw lines between

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createPoly(), createStar(),
createTriangle(), deleteShape(), drawShape(), getShapeBounds(), getShapeLocation(),
getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

143

createPoly()

Purpose

Creates a polygon to be drawn with drawShape()

Description

Creates a polygon with centre origin to be drawn at the specified x and y location with the
specified dimensions and number of points

Syntax
shape = createPoly(point1, point2, ... pointN)
shape = createPoly(points)

Arguments

shape Handle to store the newly created shape

point1 Position vector for the first point of the polygon

point2 Position vector for the the second point of the polygon

pointN Position vector for the Nth point of the polygon (you can create any number of points)

points Array of vectors describing the desired points of the polygon

Example
// draw a multicoloured irregular 4 sided polygon on screen
w = gwidth()
h = gheight()

points = [
 { w / 3, h / 3 },
 { w - w / 3, h / 3 },
 { w - w / 4, h / 1.5 },
 { w / 8, h / 2.5 }
]

cols = [
 red,
 green,
 blue,
 bisque
]

shape_1 = createPoly(points)

144

for i = 0 to len(cols) loop
 setVertexColour(shape_1, i, cols[i])
repeat

drawShape(shape_1)
update()
sleep(3)

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

145

createSprite()

Purpose

Create a new sprite.

Description

Create a new sprite

Syntax
handle = createSprite()

Arguments

Example
image = loadImage("Untied Games/Explosion 01", false)
explosion = createSprite()
setSpriteImage(explosion, image)
setSpriteAnimation(explosion, 0, 69, 60)
setSpriteLocation(explosion, { gWidth() / 2, gHeight() / 2 })
setSpriteScale(explosion, { 5, 5 })
tiles = getSpriteAnimFrameCount(explosion)

for i = 0 to tiles loop
 clear()
 setSpriteAnimFrame(explosion, i)
 drawSprites()
 update()
repeat

146

Associated Commands

createSprite(), deltaTime(), drawSprite(), drawSprites(), removeSprite(), updateSprites(),
updateSprite()

147

createStar()

Purpose

Creates a star to be drawn with drawShape()

Description

Creates a star with centre origin to be drawn at the specified x and y location with the specified
dimensions and number of points

Syntax
shape = createStar(x, y, innerRadius, outerRadius, numPoints)

Arguments

shape Handle which stores the newly created shape

x Horizontal screen position in pixels

y Vertical screen position in pixels

width Radius of the inside section of the star

height Radius of the outside section of the star

Example
// draw a multicoloured 7-pointed star on the screen
shape_1 = createStar(gwidth() / 2, gheight() / 2, 100, 300, 7)

points = [
 red,
 orange,
 yellow,
 green,
 blue,
 indigo,
 violet
]

for i = 0 to len(points) loop
 setVertexColour(shape_1, i, points[i])
repeat

for i = len(points) to 0 step -1 loop
 setVertexColour(shape_1, i + 7, points[i - 1])
repeat

148

drawShape(shape_1)
update()
sleep(3)

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

149

createTriangle()

Purpose

Creates a triangle to be drawn with drawShape()

Description

Creates a triangle with centre origin to be drawn at the specified x and y locations

Syntax
shape = createTriangle(x1, y1, x2, y2, x3, y3)

Arguments

shape Handle which stores the newly created shape

x1 Horizontal screen position in pixels of the first point

y1 Vertical screen position in pixels of the first point

x2 Horizontal screen position in pixels of the second point

y2 Vertical screen position in pixels of the second point

x3 Horizontal screen position in pixels of the third point

y3 Vertical screen position in pixels of the third point

Example
// draw a multicoloured triangle on the screen
x = 0
y = 1

points = [
 [gwidth() / 3, gheight() / 3],
 [gwidth() / 3 + gwidth() / 3, gheight() / 3],
 [gwidth() / 2, gheight() - gheight() / 3]
]

shape_1 = createTriangle(points[0][x], points[0][y], points[1][x], points[1][y], points[2][x], points[2][y])

setVertexColour(shape_1, 0, red)
setVertexColour(shape_1, 1, green)
setVertexColour(shape_1, 2, blue)

drawShape(shape_1)
update()
sleep(3)

150

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), deleteShape(), drawShape(), getShapeBounds(), getShapeLocation(),
getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

151

deleteShape()

Purpose

Delete a shape drawn using drawShape()

Description

Fully removes all traces of the supplied shape. This also renders the handle assigned to the shape
as void

Syntax
deleteShape(shape)

Arguments

shape Handle which stores the shape to delete

Example
w = gwidth()
h = gheight()
radius = 100

shape1 = createCircle(w / 3, h / 2, radius, 360)
shape2 = createCircle(w - w / 3, h / 2, radius, 360)
shape3 = 0

join = false
dist = 0

loop
 clear(grey)
 j = controls(0)

 if !join then
 shape1Location = getShapeLocation(shape1)
 shape2Location = getShapeLocation(shape2)
 dist = distance(shape1Location, shape2Location)
 endif

 if dist < radius * 2 and !join then
 shape3 = joinShapes(shape1, shape2)
 deleteShape(shape1)
 deleteShape(shape2)
 join = true
 endif

152

 if join then
 moveShape(shape3, { j.lx, -j.ly } * 6)
 drawShape(shape3)
 else
 moveShape(shape1, { j.lx, -j.ly } * 6)
 drawShape(shape1)
 drawShape(shape2)
 endif

 update()
repeat

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), drawShape(), getShapeBounds(), getShapeLocation(),
getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

153

deltaTime()

Purpose

Get the time difference between frames

Description

Time difference between the current frame and the previous frame, in seconds

Syntax
deltatime = deltaTime()

Arguments

deltatime time difference between the current frame and the previous frame, in seconds

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = []
for i = 0 to 4 loop
 enemy[i] = createSprite()
 setSpriteImage(enemy[i], image)
 setSpriteAnimation(enemy[i], 0, 4, 20)
 setSpriteLocation(enemy[i], { (i % 2) * 400 + 400, int(i / 2) * 300 + 200 })
 setSpriteScale(enemy[i], { 4, 4 })
repeat

loop
 clear()
 // updateSprite(enemy[0]) not updated
 updateSprite(enemy[1]) // normal speed
 updateSprite(enemy[2], deltaTime() / 2) // half speed
 updateSprite(enemy[3], deltaTime() * 2) // double speed
 drawSprites()
 update()
repeat

154

Associated Commands

createSprite(), drawSprite(), drawSprites(), removeSprite(), updateSprites(), updateSprite()

155

detectMapCollision()

Purpose

Used to detect whether a given sprite has collided with map collision boxes

Description

Receives a sprite handle and returns either true (collided) or false (not collided) if the sprite has
collided with a map collision box data.

Syntax
collide = detectMapCollision(sprite)

Arguments

collide Returned Boolean value to indicate collision. Returns true (1) if collided, false (0) if not
collided.

sprite Handle of the sprite being checked.

Example
// To view this map demo, please load the project "Map Collision" from FUZE Programs.
// Maps must be stored in the project you wish to load them into.

loadMap("map1")
img = loadImage("Untied Games/Bat and Ball ball")

plr = [
 .spr = createSprite(),
 .vel = {},
 .col = white
]

setSpriteImage(plr.spr, img)
setSpriteScale(plr.spr, { 1, 1 })
setSpriteCamera(0, 0, 2)

loop
 centreSpriteCamera(0, 0)
 clear()
 updateSprites()

 c = controls(0)

 plr.vel += { c.lx, -c.ly } * 80
 plr.vel *= 0.87

 setSpriteSpeed(plr.spr, plr.vel)
 setSpriteColour(plr.spr, plr.col)

 drawMapLayer(0)
 drawMapLayer(1)

 if detectMapCollision(plr.spr) then
 plr.col = red
 else

156

 plr.col = white
 endif

 drawSprites()

 printAt(0, 0, "Move the ball by using the left control stick")
 printAt(0, 2, "Ball will appear red when colliding with map collision boxes, white when not colliding")

 update()
repeat

Associated Commands

157

detectSpriteCollision()

Purpose

Detect if two sprites have collided

Description

Returns true if there is a collision between the two sprites, false if not

Syntax
result = detectSpriteCollision(spriteA, spriteB)

Arguments

spriteA handle of first sprite

spriteB handle of second sprite

result true if spriteA and spriteB have collided

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = []
for i = 0 to 2 loop
 ship[i] = createSprite()
 setSpriteImage(ship[i], image)
 setSpriteScale(ship[i], { 5, 5 })
 setSpriteCollisionShape(ship[i], SHAPE_TRIANGLE, 25, 25, 180)
 ship[i].show_collision_shape = true
repeat

setSpriteRotation(ship[0], 270)
setSpriteSpeed(ship[0], { 240, 0 })
setSpriteSpeed(ship[1], { 0, 120 })
setSpriteColour(ship[1], { 0, 0, 1, 1 })
setSpriteLocation(ship[0], { 0, gHeight() / 2 })
setSpriteLocation(ship[1], { gWidth() / 2, 0 })

collide = false
while !collide loop
 clear()
 updateSprites()
 drawSprites()
 update()
 collide = detectSpriteCollision(ship[0], ship[1])
repeat

158

Associated Commands

collideSprites(), setSpriteCollisionShape()

159

drawImage()

Purpose

Draw a previously loaded image file

Description

Draws part or all of an image file at the specified location on the screen

Syntax
drawImage(handle, x, y)

drawImage(handle, x, y, scale)

drawImage(handle, { sourceX, sourceY, sourceW, sourceH }, { x, y, width, height })

Arguments

handle Variable which stores the desired image file

sourceX Horizontal pixel coordinate in the source image from which to begin drawing

sourceY Vertical pixel coordinate in the source image from which to begin drawing

sourceW Width (in pixels) of the source image to draw

sourceH Height (in pixels) of the source image to draw

x Desired on-screen horizontal axis location

y Desired on-screen vertical axis location

scale Amount by which image should be scaled

height Desired on-screen width in pixels

type The type of the image e.g. image_rgb for 24bpp

Example
roll = 0
clear()
image = loadImage("Colin Brown/Dice", false)
size = tileSize(image, 0)
for i = 1 to 10 loop
 clear()
 roll = random(6) + 1
 x = size.x - (size.x * (roll % 2))
 y = size.y * (ceil(roll / 2) - 1)
 drawImage(image, { x, y, size.x, size.y }, { 0, 0, size.x, size.y })

160

 update()
 sleep(0.3)
repeat

printAt(0, 15, "You rolled a ", roll)
update()
sleep(3)

Associated Commands

clear(), createImage(), drawImageEx(), drawQuad(), drawSheet(), loadImage(), update(),
uploadImage()

161

drawImageEx()

Purpose

Draw a previously loaded image file (extended)

Description

Draws an image file at the specified location on the screen. The image can be scaled rotated and
tinted

Syntax
drawImageEx(handle, location, rotation, scale, tint, origin)

Arguments

handle variable which stores the desired image file

location vector screen position to start drawing the image { x, y }

rotation angle to rotate image in default units

scale vector containing the horizontal and vertical scale factors { x, y }

tint colour name or RGB values { red, green, blue, opacity } between 0 and 1

origin origin point of the screen(default is { 0, 0 } which is the top left)

Example
image = loadImage("Colin Brown/Dice", false)
location = { gWidth() / 2, gHeight() / 2 }
rotation = 0
scale = { 0.5, 0.5 }
tint = red
origin = { 0, 0 }
loop
 clear()
 rotation = rotation + 1
 drawImageEx(image, location, rotation, scale, tint, origin)
 update()
repeat

162

Associated Commands

clear(), createImage(), drawImage(), drawQuad(), drawSheet(), loadImage(), update(),
uploadImage()

163

drawMap()

Purpose

Draw a tile map

Description

Draw a tile map previously loaded with loadMap()

Syntax
drawMap()

Arguments

Example
// To view this map demo, please load the project "drawMap() Demo" from FUZE Programs.
// Maps must be stored in the project you wish to load them into.

maps = [
 "map1",
 "map2"
]

m = 0
press = false

loadMap(maps[m])
setSpriteCamera(0, 0, 2)

loop
 centreSpriteCamera(0, 0)
 clear()

 c = controls(0)

 if !c.a then
 press = false
 endIf

 drawMap()

 if c.a and !press then
 press = true
 unloadMap()
 m += 1
 if m >= 2 then
 m = 0
 endIf
 loadMap(maps[m])

164

 endIf

 printAt(0, 0, "Press A button to swap between maps")
 printAt(0, 2, "Currently viewing: " + maps[m])

 update()
repeat

Associated Commands

drawMapLayer(), loadMap(), unloadMap()

165

drawMapLayer()

Purpose

Draw a tile map layer

Description

Draw a tile map layer previously loaded with loadmap

Syntax
drawMapLayer(layer)

Arguments

layer layer number of the map to draw (zero based)

Example
// To view this map demo, please load the project "Map Commands Demo" from FUZE Programs.
// Maps must be stored in the project you wish to load them into.

maps = [
 "map1",
 "map2"
]

m = 0
layer = false

press = [
 .a = false,
 .up = false
]

loadMap(maps[m])
setSpriteCamera(0, 0, 2)

loop
 centerSpriteCamera(0, 0)
 clear()

 c = controls(0)

 if !c.a then
 press.a = false
 endIf
 if !c.up then
 press.up = false
 endIf

166

 drawMapLayer(0)

 if layer then
 drawMapLayer(1)
 endIf

 if c.up and !press.up then
 press.up = true
 layer = !layer
 endIf

 if c.a and !press.a then
 press.a = true
 unloadMap()
 m += 1
 if m >= 2 then
 m = 0
 endIf
 loadMap(maps[m])
 endIf

 printAt(0, 0, "Press A button to swap between maps")
 printAt(0, 2, "Currently viewing: " + maps[m])
 printAt(0, 4, "Press Up directional button to toggle additional layers")

 update()
repeat

Associated Commands

drawMap(), loadMap(), unloadMap()

167

drawQuad()

Purpose

Draw an image or portion of an image on an area of the screen

Description

Draw the spcified part of an image to the specified part of the screen and with the specified tint

Syntax
drawQuad(handle, { sourcex, sourcey, sourcew, sourceh }, points, tint)

Arguments

handle Variable which stores the desired image file

sourcex Horizontal pixel coordinate in the source image from which to begin drawing

sourcey Vertical pixel coordinate in the source image from which to begin drawing

sourcew Width (in pixels) of the source image to draw

sourceh Height (in pixels) of the source image to draw

points Array of points of the target area of the screen (top left, top right, bottom right, bottom left)

tint colour name or RGB values { red, green, blue, opacity } between 0 and 1

Example
// draw image in centre with 100 pixel border and green tint
image = loadImage("Ansimuz/CyberpunkStreetLayer2", false)
size = imageSize(image)
points = []
points[0] = { 100, 100 }
points[1] = { gWidth() - 100, 100 }
points[2] = { gWidth() - 100, gHeight() - 100 }
points[3] = { 100, gheight() - 100 }
drawQuad(image, { 0, 0, size.x, size.y }, points, green)
update()
sleep(3)

168

Associated Commands

clear(), createImage(), drawImage(), drawImageEx(), drawSheet(), loadImage(), update(),
uploadImage()

169

drawShape()

Purpose

Draws a shape created with the advanced shape functions

Description

Draws the shape stored in the supplied handle

Syntax
drawShape(shape)

Arguments

shape Handle which stores the shape to draw

Example
// draw a multicoloured rectangle on the screen
box1 = createBox(gwidth() / 2, gheight() / 2, gwidth(), gheight())

setVertexColour(box1, 0, bisque)
setVertexColour(box1, 1, cyan)
setVertexColour(box1, 2, fuzeblue)
setVertexColour(box1, 3, fuzepink)

drawShape(box1)
update()
sleep(3)

Associated Commands

170

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

171

drawSheet()

Purpose

Draw a tile from a tiled image

Description

Draw the specified tile number from a tiled image at the specified location and size

Syntax
drawSheet(handle, tileno, { xpos, ypos, width, height })

Arguments

handle Variable which stores the desired image file

tileno Tile number to display (zero based)

xpos Horizontal screen position in pixels

ypos Vertical screen postion in pixels

width Desired on-screen width in pixels

height Desired on-screen height in pixels

Example
image = loadImage("Untied Games/Enemy A", false)
pos = { gwidth() / 2, gheight() / 2 }
loop
 for i = 0 to 4 loop
 clear()
 drawImage(image, 0, 0, 1)
 drawSheet(image, i, { pos.x - 100, pos.y - 100, 200, 200 })
 update()
 sleep(0.1)
 repeat
repeat

172

Associated Commands

clear(), createImage(), drawImage(), drawImageEx(), drawQuad(), loadImage(), update(),
uploadImage()

173

drawSprite()

Purpose

Draw the specified sprite

Description

Draw only the specified sprite in the current position, orientation and colour

Syntax
drawSprite(sprite)

Arguments

sprite handle of the sprite

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = []
for i = 0 to 4 loop
 enemy[i] = createSprite()
 setSpriteImage(enemy[i], image)
 setSpriteAnimation(enemy[i], 0, 4, 20)
 setSpriteLocation(enemy[i], { (i % 2) * 400 + 400, int(i / 2) * 300 + 200 })
 setSpriteScale(enemy[i], { 4, 4 })
repeat

loop
 clear()
 printAt(0, 0, "Press buttons X, A, Y and B to draw sprites")
 updateSprite(enemy[1])
 updateSprite(enemy[2], deltaTime() / 2)
 updateSprite(enemy[3], deltaTime() * 2)
 c = controls(0)
 if c.x then
 drawSprite(enemy[0])
 endif
 if c.a then
 drawSprite(enemy[1])
 endif
 if c.b then
 drawSprite(enemy[2])
 endif
 if c.y then
 drawSprite(enemy[3])
 endif
 update()
repeat

174

Associated Commands

createSprite(), deltaTime(), drawSprite(), drawSprites(), removeSprite(), updateSprites(),
updateSprite()

175

drawSprites()

Purpose

Draw all sprites

Description

Draw all sprites in their current position, orientation and colour

Syntax
drawSprites()

Arguments

Example
radians(1)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 4, 4 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left control stick to control sprite")
 setSpriteSpeed(ship, { 480 * c.lx, -480 * c.ly })
 curpos = getSpriteLocation(ship)
 if curpos != lastpos then
 setSpriteRotation(ship, -pi / 2 + atan2(curpos.y - lastpos.y, curpos.x - lastpos.x))
 lastpos = curpos
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

176

Associated Commands

createSprite(), deltaTime(), drawSprite(), drawSprites(), removeSprite(), updateSprites(),
updateSprite()

177

freeImage()

Purpose

Dispose of an image that is no longer required

Description

Free up the momory allocated to an image so that it can be used again

Syntax
freeImage(handle)

Arguments

handle Variable which stores the desired image file

Example
dice = loadImage("Colin Brown/Dice", false)
freeImage(dice)
drawImage(dice, 0, 0) // This will cause an error
update()
sleep(3)

Associated Commands

createImage(), loadImage(), uploadImage()

178

getShapeBounds()

Purpose

Find the boundaries of a supplied shape

Description

Returns the boundaries (edges) of a shape drawn with drawShape()

Syntax
boundaries = getShapeBounds(shape)

Arguments

shape Handle which stores the shape in question

boundaries Vector describing the boundaries of the shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeLocation(),
getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

179

getShapeLocation()

Purpose

Find the pixel co-ordinate location of a given shape

Description

Returns the x and y screen positions (as a vector) in pixels of a supplied shape

Syntax
location = getShapeLocation(shape)

Arguments

location Handle to store the returned position vector

shape Handle which stores the shape in question

Example
shape = createCircle(gwidth() / 2, gheight() / 2, 200, 360)

loop
 clear(grey)
 pos = getShapeLocation(shape)
 print(pos)
 drawShape(shape)
 update()
repeat

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

180

getShapeRotation()

Purpose

Find the rotation of a shape in degrees or radians

Description

Returns the amount of rotation applied to a shape drawn with drawShape()

Syntax
rotation = getShapeRotation(shape)

Arguments

shape Handle which stores the shape in question

rotation Handle which stores the amount of rotation applied to the supplied shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeScale(), getShapeTint(), getVertex(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

181

getShapeScale()

Purpose

Find the current scale multiplier of a shape drawn with drawShape()

Description

Returns a vector describing the current scale multiplier of a supplied shape

Syntax
scale = getShapeScale(shape)

Arguments

shape Handle which stores the shape in question

scale Vector which describes the x and y scale multiplier of the shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeTint(), getVertex(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

182

getShapeTint()

Purpose

Find the tint (colour) of a shape

Description

Returns the colour vector (RGBA) of a shape drawn with drawShape()

Syntax
tint = getShapeTint(shape)

Arguments

shape Handle which stores the shape in question

tint RGBA vector which describes the colour of the supplied shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getVertex(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

183

getSpriteAnimFrame()

Purpose

Get the current frame in an animated sprite

Description

Find the number of the current frame in an animated sprite

Syntax
frame = getSpriteAnimFrame(sprite)

Arguments

sprite handle of the sprite

frame number of the current animation frame in the sprite

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = createSprite()
setSpriteImage(enemy, image)
setSpriteAnimation(enemy, 0, 4, 2)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(enemy, lastpos)
setSpriteScale(enemy, { 8, 8 })

loop
 clear()
 frame = getSpriteAnimFrame(enemy)
 printAt(0, 0, "Frame ", int(frame))
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

getSpriteAnimFrameCount(), getSpriteAnimSpeed(), setSpriteAnimation(), setSpriteAnimFrame(),
setSpriteAnimSpeed()

184

getSpriteAnimFrameCount()

Purpose

Find the number of frames in an animated sprite

Description

Syntax
count = getSpriteAnimFrameCount(sprite)

Arguments

sprite handle of the sprite

count number of animation frames in the sprite

Example
image = loadImage("Untied Games/Explosion 01", false)
explosion = createsprite()
setSpriteImage(explosion, image)
setSpriteAnimation(explosion, 0, 69, 60)
setSpriteLocation(explosion, { gWidth() / 2, gHeight() / 2 })
setSpriteScale(explosion, { 5, 5 })
tiles = getSpriteAnimFrameCount(explosion)

for i = 0 to tiles loop
 clear()
 setSpriteAnimFrame(explosion, i)
 drawSprites()
 update()
repeat

185

Associated Commands

getSpriteAnimFrame(), getSpriteAnimSpeed(), setSpriteAnimation(), setSpriteAnimFrame(),
setSpriteAnimSpeed()

186

getSpriteAnimSpeed()

Purpose

Find the speed of a sprites animation

Description

Get the current speed of animation of a sprite

Syntax
 speed = getSpriteAnimSpeed(sprite)

 speed = sprite.anim_speed

Arguments

sprite The handle of the sprite

speed The speed of the animation

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = createSprite()
setSpriteImage(enemy, image)
speed = 0
maxspeed = 50
setSpriteAnimation(enemy, 0, 4, speed)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(enemy, lastpos)
setSpriteScale(enemy, { 8, 8 })

loop
 clear()
 printAt(0, 0, "Use left joystick to control animation speed")
 c = controls(0)
 speed = getSpriteAnimSpeed(enemy)
 if abs(speed + c.lx) < maxspeed then
 setSpriteAnimSpeed(enemy, speed + c.lx)
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

187

Associated Commands

getSpriteAnimFrame(), getSpriteAnimFrameCount(), setSpriteAnimation(),
setSpriteAnimFrame(), setSpriteAnimSpeed()

188

getSpriteCamera()

Purpose

Get the sprite camera position

Description

Find the current sprite camera position. The initial position is (0, 0, 1)

Syntax
camera = getSpriteCamera()

Arguments

camera A vector containing the current sprite camera position { x, y, z }

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = []
for i = 0 to 4 loop
 enemy[i] = createsprite()
 setSpriteImage(enemy[i], image)
 setSpriteAnimation(enemy[i], 0, 4, 20)
 setSpriteLocation(enemy[i], { (i % 2) * 400 + 400, int(i / 2) * 300 + 200 })
 setSpriteScale(enemy[i], { 4, 4 })
repeat

camera = getSpriteCamera()
rotation = getSpriteCameraRotation()
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Camera posotion: x = ", camera.x, " y = ", camera.y, " z = ", camera.z, " rotation: ", rotation)
 printAt(0, 1, "Use left joypad to pan, right joypad to zoom/rotate")
 if c.up then
 camera.y -= 5
 endIf
 if c.down then
 camera.y += 5
 endIf
 if c.left then
 camera.x -= 5
 endIf
 if c.right then
 camera.x += 5
 endIf
 if c.x then
 camera.z += 0.05
 endIf
 if c.b then
 camera.z -= 0.05
 endIf
 if c.y then
 rotation -= 0.5
 endIf
 if c.a then
 rotation += 0.5
 endIf
 setSpriteCamera(camera.x, camera.y, camera.z)
 setSpriteCameraRotation(rotation)
 updateSprites()
 drawSprites()
 update()
repeat

189

Associated Commands

centreSpriteCamera(), getSpriteCameraRotation(), setSpriteCamera(), setSpriteCameraRotation()

190

getSpriteCameraRotation()

Purpose

Get the sprite camera rotation angle

Description

Returns the current rotation angle of the sprite camera

Syntax
angle = getSpriteCameraRotation()

Arguments

angle camera roatation angle in the default units

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = []
for i = 0 to 4 loop
 enemy[i] = createSprite()
 setSpriteImage(enemy[i], image)
 setSpriteAnimation(enemy[i], 0, 4, 20)
 setSpriteLocation(enemy[i], { (i % 2) * 400 + 400, int(i / 2) * 300 + 200 })
 setSpriteScale(enemy[i], { 4, 4 })
repeat

camera = getSpriteCamera()
rotation = getSpriteCameraRotation()
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Camera position: x = ", camera.x, " y = ", camera.y, " z = ", camera.z, " rotation: ", rotation)
 printAt(0, 1, "Use left joypad to pan, right joypad to zoom/rotate")
 if c.up then
 camera.y -= 5
 endIf
 if c.down then
 camera.y += 5
 endIf
 if c.left then
 camera.x -= 5
 endIf
 if c.right then
 camera.x += 5
 endIf
 if c.x then
 camera.z += 0.05
 endIf
 if c.b then
 camera.z -= 0.05
 endIf
 if c.y then
 rotation -= 0.5
 endIf
 if c.a then
 rotation += 0.5
 endIf
 setSpriteCamera(camera.x, camera.y, camera.z)
 setSpriteCameraRotation(rotation)
 updateSprites()
 drawSprites()
 update()
repeat

191

Associated Commands

centreSpriteCamera(), getSpriteCamera(), setSpriteCamera(), setSpriteCameraRotation()

192

getSpriteColour()

Purpose

Get the colour values of a sprite

Description

Gets the red, green, blue and alpha (opacity) values for a sprite

Syntax
colour = getSpriteColour(sprite)

red = sprite.r; green = sprite.g; blue = sprite.b; alpha = sprite.a

Arguments

sprite handle of the created sprite

colour vector containing the colour values { r, g, b, a }

red value of red colour of the sprite

green value of green colour of the sprite

blue value of blue colour of the sprite

alpha value of alpha (opacity) of the sprite

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 20, 20 })
rv = -0.5
gv = 0.5
bv = 0

loop
 clear()
 sc = getSpriteColour(ship)
 if sc.r > 1 or sc.r < 0 then
 rv = -rv
 endIf
 if sc.b > 1 or sc.b < 0 then
 gv = -gv
 endIf

193

 setSpriteColourSpeed(ship, { rv, gv, bv, 0 })
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

getSpriteColourSpeed(), setSpriteColour(), setSpriteColourSpeed()

194

getSpriteColourSpeed()

Purpose

Get the colour speeds of a sprite

Description

Get the rates of change of the colours of a sprite. These are the amounts that the sprite colours are
changed by when updatesprites is called

Syntax
colourspeed = getSpriteColourSpeed(sprite)

rspeed = sprite.r_speed; gspeed = sprite.g_speed; bspeed = sprite.b_speed; aspeed = sprite.a_speed;

Arguments

handle handle of the created sprite

colourv vector containing the colour speed values { r, g, b, a }

rspeed amount to add to the red colour of the sprite at each updatesprites call

gspeed amount to add to the blue colour of the sprite at each updatesprites call

bspeed amount to add to the green colour of the sprite at each updatesprites call

aspeed amount to add to the opacity of the sprite at each updatesprites call

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 20, 20 })
setSpriteColourSpeed(ship, { -0.5, 0.5, 0, 0 })

loop
 clear()
 sc = getSpriteColour(ship)
 cv = getSpriteColourSpeed(ship)
 if sc.r > 1 or sc.r < 0 then
 setSpriteColourSpeed(ship, { -cv.r, cv.g, cv.b, 0 })
 endIf
 if sc.g > 1 or sc.g < 0 then
 setSpriteColourSpeed(ship, { cv.r, -cv.g, cv.b, 0 })
 endIf

195

 updateSprites()
 drawSprites()
 update()
 sleep(0.1)
repeat

Associated Commands

getSpriteColour(), setSpriteColour(), setSpriteColourSpeed()

196

getSpriteDepth()

Purpose

Get a sprites depth

Description

Gets the visual depth of the sprite. For drawing, sprites will automatically be sorted by their depth
from negative (earliest drawing) to positive (latest drawing).

Syntax
depth = getSpriteDepth(sprite)

depth = sprite.depth

Arguments

sprite handle of the created sprite

depth visual depth of the sprite

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = []

for i = 0 to 2 loop
 ship[i] = createSprite()
 setSpriteImage(ship[i], image)
 setSpriteScale(ship[i], { 5, 5 })
 setSpriteDepth(ship[i], rnd(10))
repeat

setSpriteRotation(ship[0], 270)
setSpriteLocation(ship[0], { 0, gHeight() / 2 })
setSpriteLocation(ship[1], { gWidth() / 2, 0 })
setSpriteSpeed(ship[0], { 240, 0 })
setSpriteSpeed(ship[1], { 0, 120 })
setSpriteColour(ship[0], { 0, 0, 1, 1 })

while ship[0].x < gwidth() loop
 clear()
 depth0 = getSpriteDepth(ship[0])
 depth1 = getSpriteDepth(ship[1])
 if depth0 < depth1 then
 printAt(0, 0, "Red ship is on top")
 endIf
 if depth1 < depth0 then

197

 printAt(0, 0, "Blue ship is on top")
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

setSpriteDepth()

198

getSpriteImage()

Purpose

Get the image associated with a sprite

Description

Get the original image that was used to create the specified sprite

Syntax
image = getSpriteImage(sprite)

image = sprite.image

Arguments

sprite The handle of the sprite

image The handle of the associated image

Example
image = loadImage("Untied Games/Explosion 01", false)
explosion = createsprite()
setSpriteImage(explosion, image)
setSpriteLocation(explosion, { gWidth() / 2, gHeight() / 2 })
setSpriteScale(explosion, { 5, 5 })
tsize = tileSize(image, 0)
spriteImage = getSpriteImage(explosion)
isize = imageSize(spriteimage)
tiles = (isize.x / tsize.x) * (isize.y / tsize.y)
setSpriteAnimation(explosion, 0, tiles - 1, 60)

for i = 0 to tiles loop
 clear()
 updateSprites()
 drawSprites()
 update()
repeat

199

Associated Commands

getSpriteImageSize(), setSpriteImage()

200

getSpriteImageSize()

Purpose

Get the size of the image associated with a sprite

Description

Get the size of the original image that was used to create the specified sprite or the tile size if an
animation has been set

Syntax
size = getSpriteImageSize(sprite)

Arguments

sprite The handle of the sprite

size A vector containing the width and height of the original image { x, y } or the tile size

Example
image = loadImage("Untied Games/Explosion 01", false)
explosion = createsprite()
setSpriteImage(explosion, image)
setSpriteLocation(explosion, { gWidth() / 2, gHeight() / 2 })
setSpriteScale(explosion, { 5, 5 })
tsize = tileSize(image, 0)
isize = getSpriteImageSize(explosion)
tiles = (isize.x / tsize.x) * (isize.y / tsize.y)
setSpriteAnimation(explosion, 0, tiles, 60)

for i = 0 to tiles loop
 clear()
 updateSprites()
 drawSprites()
 update()
repeat

201

Associated Commands

getSpriteImage(), setSpriteImage()

202

getSpriteLocation()

Purpose

Get the position of a sprite on the screen

Description

Get the horizontal and vertical position of a sprite

Syntax
position = getSpriteLocation(sprite)

xpos = sprite.x; ypos = sprite.y

Arguments

sprite The handle of the created sprite

position A vetor conatining the x and y coordinates of the sprtite { x, y }

xpos The horizontal position on the screen in pixels

ypos The vertical position on the screen in pixels

Example
radians(true)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 4, 4 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick to control sprite")
 setSpriteSpeed(ship, { 480 * c.lx, -480 * c.ly })
 curpos = getSpriteLocation(ship)
 if curpos != lastpos then
 setSpriteRotation(ship, -pi / 2 + atan2(curpos.y - lastpos.y, curpos.x - lastpos.x))
 lastpos = curpos
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

203

Associated Commands

getSpriteOrigin(), setSpriteLocation(), setSpriteOrigin()

204

getSpriteOrigin()

Purpose

Find the origin point of a sprite

Description

Find the origin point of the specified sprite. Default is the centre (0, 0)

Syntax
origin = getSpriteOrigin(sprite)

Arguments

sprite handle of the sprite

origin origin point of the sprite { x , y }

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = createSprite()
setSpriteImage(enemy, image)
setSpriteAnimation(enemy, 0, 4, 20)
setSpriteLocation(enemy, { 0, 0 })
size = getSpriteSize(enemy)
setSpriteScale(enemy, { 8, 8 })

loop
 clear()
 origin = getSpriteOrigin(enemy)
 printAt(20, 10, "Sprite origin x = ", origin.x, " y = ", origin.y)
 printAt(20, 11, "Press A to move origin to the top left")
 printAt(20, 12, "Press B to move origin to the centre")
 c = controls(0)
 if c.a then
 setSpriteOrigin(enemy, { -size.x / 2, -size.y / 2 })
 endIf
 if c.b then
 setSpriteOrigin(enemy, { 0, 0 })
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

205

Associated Commands

getSpriteLocation(), setSpriteLocation(), setSpriteOrigin()

206

getSpriteRotation()

Purpose

Get the rotation angle of a sprite

Description

Get the current rotation angle of a sprite in the default angle units

Syntax
angle = getSpriteRotation(sprite)

angle = sprite.rotation

Arguments

sprite handle of the created sprite

rotation angle in the default units

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 10, 10 })
setSpriteRotationSpeed(ship, 60)

loop
 clear()
 angle = getSpriteRotation(ship)
 if angle > 360 then
 setSpriteRotationSpeed(ship, -60)
 endIf
 if angle < 0 then
 setSpriteRotationSpeed(ship, 60)
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

207

Associated Commands

getSpriteRotationSpeed(), setSpriteRotation(), setSpriteRotationSpeed()

208

getSpriteRotationSpeed()

Purpose

Get a sprites rotation speed

Description

This is the amount that the sprite’s rotation angle is changed by when updatesprites is called

Syntax
rotatespeed = getSpriteRotationSpeed(sprite)

rotatespeed = sprite.rotation_speed

Arguments

sprite handle of the created sprite

rotatespeed amount to add to the rotation angle of the sprite at each updatesprites call

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 10, 10 })
maxrs = 240 // max rotation speed
accr = 1 // accelaration

loop
 clear()
 rs = getSpriteRotationSpeed(ship)
 if abs(rs) > maxrs then
 accr = -accr
 endIf
 setSpriteRotationSpeed(ship, rs + accr)
 updateSprites()
 drawSprites()
 update()
repeat

209

Associated Commands

getSpriteRotation(), setSpriteRotation(), setSpriteRotationSpeed()

210

getSpriteScale()

Purpose

Get a sprite’s scale factor

Description

This is the amount that the sprite’s scale factor is changed by when updatesprites is called

Syntax
scale = getSpriteScale(sprite)

xscale = sprite.xscale; yscale = sprite.yscale

Arguments

handle handle of the created sprite

scale vector containing the scale factor values { x, y }

xscale amount to add to the horizontal scale of the sprite at each updatesprites call

yscale amount to add to the vertical scale of the sprite at each updatesprites call

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 10, 10 })
minsf = 10 // min scale factor
maxsf = 20 // max scale factor
sv = 5

loop
 clear()
 sf = getSpriteScale(ship)
 if sv > 0 and sf.x > maxsf then
 sv = -sv
 endIf
 if sv < 0 and sf.x < minsf then
 sv = -sv
 endIf
 setSpriteScaleSpeed(ship, { sv, sv })
 updateSprites()
 drawSprites()

211

 update()
repeat

Associated Commands

getSpriteScaleSpeed(), getSpriteSize(), setSpriteScale(), setSpriteScaleSpeed()

212

getSpriteScaleSpeed()

Purpose

Get a sprites scale speed

Description

This is the amount by which the sprite’s scale factor is changed by when updatesprites is called

Syntax
scalespeed = getSpriteScaleSpeed(sprite)

xscalespeed = sprite.xscale_speed; yscalespeed = sprite.yscale_speed

Arguments

sprite handle of the created sprite

scalespeed vector containing the scale speed values { x, y }

xscalespeed amount to add to the horizontal scale of the sprite at each updatesprites call

yscalespeed amount to add to the vertical scale of the sprite at each updatesprites call

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 10, 10 })
maxsv = 30 // max scale speed
accsv = 1 // accelaration

loop
 clear()
 sv = getSpriteScaleSpeed(ship)
 if abs(sv.x) > maxsv then
 accsv = -accsv
 endIf
 setSpriteScaleSpeed(ship, { sv.x + accsv, sv.y + accsv })
 updateSprites()
 drawSprites()
 update()
repeat

213

Associated Commands

getSpriteScale(), getSpriteSize(), setSpriteScale(), setSpriteScaleSpeed()

214

getSpriteSize()

Purpose

Find the size of a sprite

Description

Find the size of a sprite at the current scale factor. If the sprite was created from a tiled image then
the tile size is returned at the current scale factor

Syntax
size = getSpriteSize(sprite)

Arguments

sprite handle of the sprite

size vector containing the width and height of the image (or tile) at the current scale factor { x, y }

Example
image = loadImage("Untied Games/Player ships", false)
ship = createSprite()
setSpriteImage(ship, image)
setSpriteAnimation(ship, 0, 0, 0)
setSpriteLocation(ship, { gWidth() / 2, gHeight() / 2 })
setSpriteScale(ship, { 5, 5 })

loop
 clear()
 size = getSpriteSize(ship)
 printAt(0, 0, "Sprite Width: " + size.x)
 printAt(0, 1, "Sprite Height: " + size.y)
 drawSprites()
 update()
repeat

215

Associated Commands

getSpriteScale(), getSpriteScaleSpeed(), setSpriteScale(), setSpriteScaleSpeed()

216

getSpriteSpeed()

Purpose

Set a sprites speed

Description

Set a sprites horizontal and vertical speed. This is the amount that the sprite is moved by in each
axis when updatesprites is called

Syntax
speed = getSpriteSpeed(sprite)

xspeed = sprite.x_speed; yspeed = sprite.y_speed

Arguments

sprite handle of the created sprite

speed vector containg the horizontal and vertical speeds { x, y }

xspeed amount to add to the x position of the sprite at each updatesprites call

yspeed amount to add to the y position of the sprite at each updatesprites call

Example
radians(true)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 4, 4 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick to control sprite")
 setSpriteSpeed(ship, { 600 * c.lx, -600 * c.ly })
 curpos = getSpriteLocation(ship)
 if curpos != lastpos then
 setSpriteRotation(ship, -pi / 2 + atan2(curpos.y - lastpos.y, curpos.x - lastpos.x))
 lastpos = curpos
 endIf
 sv = getSpriteSpeed(ship)
 speed = sqrt(sv.x * sv.x + sv.y * sv.y)
 printAt(0, 1, "speed ", int(speed)) // print current speed
 updateSprites()
 drawSprites()
 update()
repeat

217

Associated Commands

setSpriteSpeed()

218

getSpriteVisibility()

Purpose

Find out if a sprite is visible

Description

Get the current visibility state of the specified sprite

Syntax
shown = getSpriteVisibility(sprite)

shown = sprite.visible

Arguments

sprite handle of the sprite

shown if the sprite is currently visible

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = createSprite()
setSpriteImage(enemy, image)
speed = 20
setSpriteAnimation(enemy, 0, 4, speed)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(enemy, lastpos)
setSpriteScale(enemy, { 8, 8 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Hold down the A button to show the sprite")
 setSpriteVisibility(enemy, c.a)
 visible = getSpriteVisibility(enemy)
 if visible then
 printAt(0, 1, "Sprite is visible")
 else
 printAt(0, 1, "Sprite is invisible")
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

219

Associated Commands

setSpriteVisibility()

220

getVertex()

Purpose

Find the screen position of a vertex (point) in a shape

Description

Returns a vector describing the screen position of a desired vertex in a shape drawn with
drawShape()

Syntax
position = getVertex(shape, vertex)

Arguments

shape Handle which stores the shape in question

position Vector describing the screen x and y position of the desired vertex

vertex Float index of the desired vertex (begins at 0, clockwise)

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertexColour(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

221

getVertexColour()

Purpose

Gets the colour of a vertex

Description

Returns the vector (RGBA) colour of a supplied vertex in a shape drawn with drawShape()

Syntax
colour = getVertexColour(shape, vertex)

Arguments

colour Vector (RGBA) describing the colour of the supplied vertex

shape Handle of the shape in question

vertex Number of the desired vertex (0 - N)

Example
shape = createCircle(gwidth() / 2, gheight() / 2, 200, 360)

for i = 0 to 360 loop
 setVertexColour(shape, i, { random(1.0), random(1.0), random(1.0), 1 })
repeat

loop
 clear()
 col = getVertexColour(shape, 180)
 print(col)
 drawShape(shape)
 update()
repeat

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

222

getVertexLineColour()

Purpose

Find the colour (tint) of a supplied vertex line

Description

Returns a colour vector (RGBA) describing the colour of a supplied vertex line in a shape drawn
with drawShape()

Syntax
colour = getVertexLineColour(shape, vertex)

Arguments

shape Handle which stores the shape in question

colour Vector (RGBA) describing the colour of the line through the supplied vertex

vertex Integer index of the desired vertex (begins at 0, clockwise)

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineThickness(), joinShapes(), moveShape(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

223

getVertexLineThickness()

Purpose

Find the thickness of a supplied vertex line

Description

Returns a float describing the thickness (in pixels) of the line through a supplied vertex in a shape
drawn with drawShape()

Syntax
thickness = getVertexLineThickness(shape, vertex)

Arguments

shape Handle which stores the shape in question

thickness Float describing the thickness (in pixels) of the line through the supplied vertex

vertex Integer index of the desired vertex (begins at 0, clockwise)

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), joinShapes(), moveShape(), numVerts(), rotateShape(),
scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(), setShapeScale(),
setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(), setVertexLineStyle()

224

imageH()

Purpose

Get the height of a loaded image

Description

Returns the height in pixels of an image file previously loaded with loadImage

Syntax
imageHeight = imageH(image)

Arguments

imageHeight Handle which stores the result of the function call

image Handle which stores the image

Example
img = loadImage("Ansimuz/CyberpunkStreetLayer0")

imageHeight = imageH(img)

print(imageHeight)
update()
sleep(3)

Associated Commands

clear(), createImage(), drawImage(), imageW(), imageSize(), drawSheet(), loadImage(), update(),
uploadImage()

225

imageSize()

Purpose

Get the size of a loaded image

Description

Returns the width and height of an image previosuly loaded with loadimage

Syntax
size = imageSize(sprite)

Arguments

sprite handle returned by a call to loadimage

size vector containing the width (.x) and height (.y) of the image

Example
// Scale an image to fit to the screen
img = loadImage("Colin Brown/DungeonB", false)
size = imageSize(img)
scale = min(gwidth() / size.x, gheight() / size.y)
drawImage(img, 0, 0, scale)
update()
sleep(3)

Associated Commands

clear(), createImage(), drawImage(), drawQuad(), drawSheet(), loadImage(), update(),
uploadImage()

226

227

imageW()

Purpose

Get the width of a loaded image

Description

Returns the width in pixels of an image file previously loaded with loadImage

Syntax
imageWidth = imageW(image)

Arguments

imageWidth Handle which stores the result of the function call

image Handle which stores the image

Example
img = loadImage("Ansimuz/CyberpunkStreetLayer0")

imageWidth = imageW(img)

print(imageWidth)
update()
sleep(3)

Associated Commands

clear(), createImage(), drawImage(), imageH(), imageSize(), drawSheet(), loadImage(), update(),
uploadImage()

228

joinShapes()

Purpose

Join two shapes drawn using drawShape() together

Description

Create a new shape by combining two other shapes

Syntax
newShape = joinShapes(shape1, shape2)

Arguments

newShape Handle which stores the newly created shape

shape1 Handle which stores the first shape to join

shape2 Handle which stores the second shape to join

Example
w = gwidth()
h = gheight()
radius = 100

shape1 = createCircle(w / 3, h / 2, radius, 360)
shape2 = createCircle(w - w / 3, h / 2, radius, 360)
shape3 = 0

join = false
dist = 0

loop
 clear(grey)
 j = controls(0)

 if !join then
 shape1Location = getShapeLocation(shape1)
 shape2Location = getShapeLocation(shape2)
 dist = distance(shape1Location, shape2Location)
 endif

 if dist < radius * 2 and !join then
 shape3 = joinShapes(shape1, shape2)
 deleteShape(shape1)
 deleteShape(shape2)
 join = true

229

 endif

 if join then
 moveShape(shape3, { j.lx, -j.ly } * 6)
 drawShape(shape3)
 else
 moveShape(shape1, { j.lx, -j.ly } * 6)
 drawShape(shape1)
 drawShape(shape2)
 endif

 update()
repeat

Associated Commands

createLine(), createLineStrip(), createCurve(), createCircle(), createPoly(), createTriangle(),
createStar(), createBox(), copyShape(), deleteShape(), drawShape(), moveShape(),
getShapeBounds(), getShapeLocation(), setShapeLocation(), getShapeRotation(),
setShapeRotation(), rotateShape(), getShapeScale(), setShapeScale(), scaleShape(),
getShapeTint(), setShapeTint(), numVerts(), getVertex(), setVertex(), getVertexColour(),
setVertexColour(), getVertexLineThickness(), setVertexLineStyle(), setShapeColour(),
setShapeLineStyle(), setShapeScaleModeLocal()

230

line()

Purpose

Draw a line

Description

Draw a line between two points in the specified colour

Syntax
line(point1, point2, colour)

Arguments

point1 screen coordinates of first point in pixels { x, y }

point2 screen coordinates of second point in pixels { x, y}

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

Example
// Draw 100 random lines
clear()
for i = 1 to 100 loop
 point1 = { random(gWidth()), random(gHeight()) }
 point2 = { random(gWidth()), random(gHeight()) }
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 line(point1, point2, col)
 update()
repeat

// Wait 10 seconds
sleep(10)

Associated Commands

box(), circle(), triangle()

231

loadImage()

Purpose

Load an image from a file

Description

Loads an image from the file specified into memory ready for display

Syntax
handle = loadImage(filename)

handle = loadImage(filename, filter)

Arguments

handle variable which stores the desired image file

filename relative path of the image to load

filter set filtering on or off - generally on for real images and off for pixel art

Example
roll = 0
clear()
image = loadImage("Colin Brown/Dice", false)
size = tileSize(image, 0)

for i = 1 to 10 loop
 clear()
 roll = random(6) + 1
 x = size.x - (size.x * (roll % 2))
 y = size.y * (ceil(roll / 2) - 1)
 drawimage(image, { x, y, size.x, size.y }, { 0, 0, size.x, size.y })
 update()
 sleep(0.3)
repeat
printAt(0, 15, "You rolled a ", roll)
update()
sleep(3)

232

Associated Commands

clear(), createImage(), drawImage(), drawImageEx(), drawQuad(), drawSheet(), update(),
uploadImage()

233

loadMap()

Purpose

Load a tile map file

Description

Load a tile map file created in the tile map editor into memory

Syntax
loadMap(filename)

Arguments

filename The name of the map created with the tile map editor

Example
// To view this map demo, please load the project "Map Commands Demo" from FUZE Programs.
// Maps must be stored in the project you wish to load them into.

maps = [
 "map1",
 "map2"
]

m = 0
layer = false

press = [
 .a = false,
 .up = false
]

loadMap(maps[m])
setSpriteCamera(0, 0, 2)

loop
 centerSpriteCamera(0, 0)
 clear()

 c = controls(0)

 if !c.a then
 press.a = false
 endIf
 if !c.up then
 press.up = false
 endIf

234

 drawMapLayer(0)

 if layer then
 drawMapLayer(1)
 endIf

 if c.up and !press.up then
 press.up = true
 layer = !layer
 endIf

 if c.a and !press.a then
 press.a = true
 unloadMap()
 m += 1
 if m >= 2 then
 m = 0
 endIf
 loadMap(maps[m])
 endIf

 printAt(0, 0, "Press A button to swap between maps")
 printAt(0, 2, "Currently viewing: " + maps[m])
 printAt(0, 4, "Press Up directional button to toggle additional layers")

 update()
repeat

Associated Commands

drawMap(), drawMapLayer(), unloadMap()

235

moveShape()

Purpose

Apply movement to a shape drawn with drawShape()

Description

Applies movement on a pixel-per-frame basis to a shape’s x and y screen position

Syntax
moveShape(shape, x, y)
moveShape(shape, axes)

Arguments

shape Handle which stores the shape to move

x Amount (in pixels) to move the shape on the horizontal axis

y Amount (in pixels) to move the shape on the vertical axis

axes Vector describing the amount (in pixels) to mvoe the shape on both axes

Example
shape = createCircle(gwidth() / 2, gheight() / 2, 200, 360)

// move the circle using the left control stick values
loop
 clear(grey)
 j = controls(0)
 moveShape(shape, { j.lx, -j.ly } * 5)
 drawShape(shape)
 update()
repeat

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), numVerts(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

236

numTiles()

Purpose

Find the number of tiles in a tilesheet

Description

Returns the number of tiles in a supplied sheet. Returns a 0 if supplied image is not a tilesheet

Syntax
number = numTiles(tilesheet)

Arguments

tilesheet handle of the tilesheet

count number of tiles in the tilesheet

Example
img = loadImage("Ansimuz/LadyIdle")

n = numTiles(img)
print(n)
update()
sleep(3)

Associated Commands

drawImage(), drawImageEx(), drawSheet(), tileSize()

237

numVerts()

Purpose

Find the number of vertices (points) in a shape

Description

Returns the number of vertices (points) in a shape drawn with drawShape()

Syntax
points = numVerts(shape)

Arguments

shape Handle which stores the shape in question

points Integer number of vertices (points) in the shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

238

plot()

Purpose

Plot a single point on the screen.

Description

Set a single pixel on the screen at the specified location to the specified colour.

Syntax
plot(x, y, colour)

Arguments

x horizontal screen position in pixels

y vertical screen position in pixels

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

Example
// Draw 1000 random points
clear()
for i = 1 to 1000 loop
 x = random(gWidth())
 y = random(gHeight())
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 plot(x, y, col)
 update()
repeat
// Wait 10 seconds
sleep(10)

Associated Commands

box(), circle(), line(), triangle()

239

removeSprite()

Purpose

Remove a sprite that is no longer needed

Description

Free up the memory allocated to a sprite so that it can be reused

Syntax
removeSprite(sprite)

Arguments

handle The handle of the created sprite

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 4, 4 })
drawSprites()
update()
sleep(3)
clear()
removeSprite(ship)
drawSprites() // nothing is drawn
update()
sleep(3)

Associated Commands

createSprite(), deltaTime(), drawSprites(), updateSprites(), updateSprite()

240

renderEffect()

Purpose

Apply a visual effect

Description

Apply a visual effect to a 2D image

Syntax
renderEffect(image, target, effect, arguments)

Arguments

image source image (or framebuffer for screen)

target target image (or framebuffer for screen)

effect handle of effect e.g. fx_motionblur

arguments list of arguments for the effect. Parameters are as follows (unused indicates an entry is
required but has no effect):

fx_blur [1 / width, 1 / height, dirX, dirY]

fx_chromaticAberration [centreX, centreY, scale]

fx_colourAdjust [biasR, biasG, biasB, unused, gainR, gainG, gainB, unused, curveR, curveG, curveB,
saturation]

fx_crt [lines, strength, focus]

fx_gb [whiteLevel]

fx_kawaseBlur [1 / width, 1 / height, iteration]

fx_motionBlur [1 / width, 1 / height, dirX, dirY]

fx_outline [threshold, unused, unused, unused, outlineR, outlineG, outlineB]

fx_posterize [levels]

fx_radialBlur [1 / width, 1 / height, centreX, centreY, scale]

fx_sobel []

fx_threshold [threshold]

fx_tonemap [exposure, whitePoint]

241

fx_vignette [centreX, centreY, scale]

Example
pos = { 960, 540 }
vel = { 0, 0 }
col = { 1, 0, 0, 1 }
rt = createImage(1920, 1080, true, image_rgb)
loop
 c = controls(0)
 vel += { c.lx, -c.ly }
 pos += vel
 vel *= 0.95

 if col.r > 0 and col.b <= 0 then
 col.r -= 0.01
 col.g += 0.01
 else
 if col.g > 0 then
 col.g -= 0.01
 col.b += 0.01
 else
 col.b -= 0.01
 col.r += 0.01
 endIf
 endIf

 setDrawTarget(rt)
 box(0, 0, 1920, 1080, { 0, 0, 0, 0.25 }, false)
 circle(pos.x, pos.y, 50, 32, col, false)

 setDrawTarget(framebuffer)
 clear()
 renderEffect(rt, framebuffer, fx_motionblur, [1 / 1920, 1 / 1080, vel.x / 2, vel.y / 2])

 update()
repeat

Associated Commands

setDrawTarget()

242

rotateShape()

Purpose

Apply rotation to a shape drawn with drawShape()

Description

Rotates a shape by a given number of degrees or radians

Syntax
rotateShape(shape, amount)

Arguments

shape Handle which stores the shape to move

amount Number of degrees or radians to rotate each frame. Negative numbers produce anti-
clockwise rotation

Example
shape = createBox(gwidth() / 2, gheight() / 2, 200, 300)

// rotate the box with the left control stick y axis
loop
 clear(grey)
 j = controls(0)
 rotateShape(shape, j.ly)
 drawShape(shape)
 update()
repeat

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

243

scaleShape()

Purpose

Sets a scale direction to be applied to a shape

Description

Used to apply a scale direction to a shape drawn with drawShape()

Syntax
scaleShape(shape, scale)
scaleShape(shape, dirX, dirY)

Arguments

shape Handle which stores the shape in question

scale Vector which describes the x and y scale direction to be applied to the shape

scaleX Float scale direction to be applied to the horizontal axis of the shape

scaleY Float scale direction to be applied to the veritcal axis of the shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), setShapeColour(), setShapeLineStyle(), setShapeRotation(),
setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

244

setBlend()

Purpose

Set the blend mode

Description

Sets the function used to combine drawn pixels with the background

Syntax
setBlend(mode)

Arguments

mode blend mode : none (0), mix (1), add (2), subtract (3) or multiply (4)

Example
palette = [
 red,
 green,
 blue,
 yellow,
 purple,
 lime,
 orange,
 bisque,
 turquoise,
 teal,
 cyan
]

pos = { 120, 120 }
img = loadImage("Finalbossblues/monster_elk", false)

blendTypes = [
 "None",
 "Mix",
 "Add",
 "Subtract",
 "Multiply"
]

type = 0
press = false

loop

245

 clear()
 c = controls(0)
 pos.x += c.lx * 4
 pos.y -= c.ly * 4
 if c.right and !press then
 type += 1
 press = true
 endIf
 if !c.right then
 press = false
 endIf
 if type > 4 then
 type = 0
 endIf

 setBlend(0)
 w = gWidth() / len(palette)
 for i = 0 to len(palette) loop
 box(i * w, gHeight() / 10, w, gHeight(), palette[i], false)
 repeat

 setBlend(type)
 drawImage(img, pos.x, pos.y, 2)

 setBlend(1)
 printAt(0, 0, "Use Joy-Con Left Control Stick to move the image")
 printAt(0, 1, "Press Right Directional Button to adjust blend type")
 printAt(0, 2, "Blend Type: " + blendTypes[type])
 update()
repeat

Associated Commands

246

setShapeColour()

Purpose

Applies a colour to a shape

Description

Used to apply a colour vector (RGBA) to a shape drawn with drawShape()

Syntax
setShapeColour(shape, colour)

Arguments

shape Handle which stores the shape in question

colour RGBA vector which describes the colour to be applied to the supplied shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setVertex(), setVertexColour(),
setVertexLineStyle()

247

setShapeLineStyle()

Purpose

Set the draw style for the outline of a shape

Description

Used to change the colour and thickness of the outline in a shape drawn with drawShape()

Syntax
setShapeLineStyle(shape, thickness, tint)

Arguments

shape Handle which stores the shape in question

thickness Float describing the thickness (in pixels, from the centre of the line outward) of the line

tint Vector (RGBA) to set the colour of the outline

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeRotation(), setShapeScale(),
setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(), setVertexLineStyle()

248

setShapeLocation()

Purpose

Set the pixel co-ordinate location of a given shape to be drawn with drawShape()

Description

Changes the on-screen location of a shape, overwriting its original position

Syntax
setShapeLocation(shape, x, y)
setShapeLocation(shape, location)

Arguments

shape Handle which stores the shape to move

x New horizontal screen position (in pixels)

y New vertical screen position (in pixels)

location Vector which describes the new screen position for the shape

Example
shape = createCircle(gwidth() / 2, gheight() / 2, 200, 360)

setShapeLocation(shape, 500, 500)

loop
 clear(grey)
 drawShape(shape)
 update()
repeat

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour(), setVertexLineStyle()

249

setShapeRotation()

Purpose

Sets the rotation of a shape in degrees or radians

Description

Used to apply rotation to a shape drawn with drawShape()

Syntax
setShapeRotation(shape, amount)

Arguments

shape Handle which stores the shape to rotate

amount Float number of degrees (or radians) to rotate the shape by around the origin. Negative
numbers apply counter-clockwise rotation

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(), setShapeScale(),
setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(), setVertexLineStyle()

250

setShapeScale()

Purpose

Sets a scale multiplier to a supplied shape

Description

Used to apply a scale multiplier to a shape drawn with drawShape()

Syntax
setShapeScale(shape, scale)
setShapeScale(shape, scaleX, scaleY)

Arguments

shape Handle which stores the shape in question

scale Vector which describes the x and y scale to be applied to the shape

scaleX Float scale multiplier to be applied to the horizontal axis of the shape

scaleY Float scale multiplier to be applied to the veritcal axis of the shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScaleModeLocal(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

251

setShapeScaleModeLocal()

Purpose

Sets the scale mode the local as opposed to global for a shape

Description

Syntax
setShapeScaleModeLocal(shape, enabled)

Arguments

shape Handle which stores the shape in question

enabled Integer boolean value (0 or 1) for enabled or disabled. Enabled gives local scale mode,
disabled gives global

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeTint(), setVertex(), setVertexColour(),
setVertexLineStyle()

252

setShapeTint()

Purpose

Applies a tint (colour) to a shape

Description

Used to apply a colour vector (RGBA) to a shape drawn with drawShape()

Syntax
setShapeTint(shape, tint)

Arguments

shape Handle which stores the shape in question

tint RGBA vector which describes the colour to be applied to the supplied shape

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setVertex(), setVertexColour(),
setVertexLineStyle()

253

setSpriteAnimation()

Purpose

Animate a sprite

Description

Create a sprite from a tile sheet and animate it.

Syntax
setSpriteAnimation(sprite, startTile, endTile)

setSpriteAnimation(sprite, startTile, endTile, speed)

Arguments

sprite The handle of the sprite

startTile The number of the first tile in the animation sequence (0 based)

endTile The number of the last tile in the animation sequence (0 based)

speed The speed of the animation (default is 10)

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = createSprite()
setSpriteImage(enemy, image)
setSpriteAnimation(enemy, 0, 4, 20)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(enemy, lastpos)
setSpriteScale(enemy, { 8, 8 })

loop
 clear()
 updateSprites()
 drawSprites()
 update()
repeat

254

Associated Commands

getSpriteAnimFrame(), getSpriteAnimFrameCount(), getSpriteAnimSpeed(),
setSpriteAnimFrame(), setSpriteAnimSpeed()

255

setSpriteAnimFrame()

Purpose

Set the current frame in an animated sprite

Description

Set the current frame in an animated sprite to be the specified frame number

Syntax
setSpriteAnimFrame(sprite, frame)

Arguments

sprite handle of the sprite

frame number of the current animation frame in the sprite

Example
image = loadImage("Untied Games/Explosion 01", false)
explosion = createSprite()
setSpriteImage(explosion, image)
setSpriteAnimation(explosion, 0, 69, 60)
setSpritelocation(explosion, { gWidth() / 2, gHeight() / 2 })
setSpriteScale(explosion, { 5, 5 })
tiles = getSpriteAnimFrameCount(explosion)

for i = 0 to tiles loop
 clear()
 setSpriteAnimFrame(explosion, i)
 drawSprites()
 update()
repeat

256

Associated Commands

getSpriteAnimFrame(), getSpriteAnimFrameCount(), getSpriteAnimSpeed(),
setSpriteAnimation(), setSpriteAnimSpeed()

257

setSpriteAnimSpeed()

Purpose

Change the speed of a sprites animation

Description

Speed up or slow down the speed of animation of a sprite

Syntax
setSpriteAnimSpeed(sprite, speed)

sprite.anim_speed = speed

Arguments

sprite handle of the sprite

speed speed of the animation

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = createsprite()
setSpriteImage(enemy, image)
setSpriteAnimation(enemy, 0, 4, 0)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(enemy, lastpos)
setSpriteScale(enemy, { 8, 8 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick to control animation speed")
 setSpriteAnimSpeed(enemy, c.lx * 30)
 updateSprites()
 drawSprites()
 update()
repeat

258

Associated Commands

getSpriteAnimFrame(), getSpriteAnimFrameCount(), getSpriteAnimSpeed(),
setSpriteAnimation(), setSpriteAnimFrame()

259

setSpriteCamera()

Purpose

Move the sprite camera position

Description

Move the camera position for all sprites. The initial position is (0, 0, 1)

Syntax
setSpriteCamera(pos)

setSpriteCamera(xpos, ypos)

setSpriteCamera(xpos, ypos, zpos)

Arguments

pos position vector of the camera { x, y, z }

xpos position of the camera in the x axis (pan left/right)

ypos position of the camera in the y axis (pan up/down)

zpos position of the camera in the z axis (zoom in/out)

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = []
for i = 0 to 4 loop
 enemy[i] = createsprite()
 setSpriteImage(enemy[i], image)
 setSpriteAnimation(enemy[i], 0, 4, 20)
 setSpriteLocation(enemy[i], { (i % 2) * 400 + 400, int(i / 2) * 300 + 200 })
 setSpriteScale(enemy[i], { 4, 4 })
repeat

camera = getSpriteCamera()
rotation = getSpriteCameraRotation()
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Camera posotion: x = ", camera.x, " y = ", camera.y, " z = ", camera.z, " rotation: ", rotation)
 printAt(0, 1, "Use left joypad to pan, right joypad to zoom/rotate")
 if c.up then
 camera.y -= 5
 endIf
 if c.down then
 camera.y += 5
 endIf
 if c.left then
 camera.x -= 5
 endIf
 if c.right then
 camera.x += 5
 endIf
 if c.x then
 camera.z += 0.05
 endIf

260

 if c.b then
 camera.z -= 0.05
 endIf
 if c.y then
 rotation -= 0.5
 endIf
 if c.a then
 rotation += 0.5
 endIf
 setSpriteCamera(camera.x, camera.y, camera.z)
 setSpriteCameraRotation(rotation)
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

centreSpriteCamera(), getSpriteCamera(), getSpriteCameraRotation(), setSpriteCameraRotation()

261

setSpriteCameraRotation()

Purpose

Rotate the sprite camera

Description

Set the sprite camera rotation angle

Syntax
setSpriteCameraRotation(angle)

Arguments

angle camera rotation angle in the default units

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = []
for i = 0 to 4 loop
 enemy[i] = createSprite()
 setSpriteImage(enemy[i], image)
 setSpriteAnimation(enemy[i], 0, 4, 20)
 setSpriteLocation(enemy[i], { (i % 2) * 400 + 400, int(i / 2) * 300 + 200 })
 setSpriteScale(enemy[i], { 4, 4 })
repeat

camera = getSpriteCamera()
rotation = getSpriteCameraRotation()
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Camera posotion: x = ", camera.x, " y = ", camera.y, " z = ", camera.z, " rotation: ", rotation)
 printAt(0, 1, "Use left joypad to pan, right joypad to zoom/rotate")
 if c.up then
 camera.y -= 5
 endIf
 if c.down then
 camera.y += 5
 endIf
 if c.left then
 camera.x -= 5
 endIf
 if c.right then
 camera.x += 5
 endIf
 if c.x then
 camera.z += 0.05
 endIf
 if c.b then
 camera.z -= 0.05
 endIf
 if c.y then
 rotation -= 0.5
 endIf
 if c.a then
 rotation += 0.5
 endIf
 setSpriteCamera(camera.x, camera.y, camera.z)
 setSpriteCameraRotation(rotation)
 updateSprites()
 drawSprites()
 update()
repeat

262

Associated Commands

centreSpriteCamera(), getSpriteCamera(), getSpriteCameraRotation(), setSpriteCamera()

263

setSpriteCollisionShape()

Purpose

Sets the sprite’s collision shape

Description

Sets the sprite’s collision shape to the given shape The collision shape will rotate, scale, and move
along with the sprite. The size will be automatically set according to the sprite’s image or tile
dimensions

Syntax
setSpriteCollisionShape(sprite, shape)

setSpriteCollisionShape(sprite, shape, width, height, rotation)

Arguments

sprite handle of the sprite

shape shape of the sprite’s collision (SHAPE_BOX, SHAPE_TRIANGLE, or SHAPE_CIRCLE)

width width of the shape in pixels

height height of the shape in pixels

rotation rotation of the shape in default units

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = []
for i = 0 to 2 loop
 ship[i] = createSprite()
 setSpriteImage(ship[i], image)
 setSpriteScale(ship[i], { 5, 5 })
 setSpriteCollisionShape(ship[i], SHAPE_TRIANGLE, 25, 25, 180)
 ship[i].show_collision_shape = true
repeat

setSpriteRotation(ship[0], 270)
setSpriteSpeed(ship[0], { 240, 0 })
setSpriteSpeed(ship[1], { 0, 120 })
setSpriteColour(ship[1], { 0, 0, 1, 1 })
setSpriteLocation(ship[0], { 0, gHeight() / 2 })
setSpriteLocation(ship[1], { gWidth() / 2, 0 })

collide = false

264

while !collide loop
 clear()
 updateSprites()
 drawSprites()
 update()
 collide = detectSpriteCollision(ship[0],ship[1])
repeat

Associated Commands

collideSprites(), detectSpriteCollision()

265

setSpriteColour()

Purpose

Set the colour of a sprite

Description

Sets the red, green, blue and opacity (alpha) values for a sprite

Syntax
setSpriteColour (sprite, colour)

setSpriteColour (sprite, red, green, blue, alpha)

sprite.r = red; sprite.g = green; sprite.b = blue; sprite.a = alpha

Arguments

sprite The handle of the created sprite

colour named colour or vector { r, g, b, a }

red red value between 0 and 1

green green value between 0 and 1

red blue value between 0 and 1

alpha opacity value between 0 and 1

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 10, 10 })

loop
 clear()
 r = random(101) / 100
 g = random(101) / 100
 b = random(101) / 100
 setSpriteColour(ship, { r, g, b, 1 })
 updateSprites()
 drawSprites()
 update()

266

 sleep(0.1)
repeat

Associated Commands

getSpriteColour(), getSpriteColourSpeed(), setSpriteColourSpeed()

267

setSpriteColourSpeed()

Purpose

Set the colour speeds of a sprite

Description

Set the rates of change of the colours of a sprite. These are the amounts that the sprite colours are
changed by when updatesprites is called

Syntax
setSpriteColourSpeed(sprite, rgbaSpeed)

setSpriteColourSpeed(sprite, rSpeed, gSpeed, bSpeed, aSpeed)

sprite.r_speed = rspeed; sprite.g_speed = gspeed; sprite.b_speed = bspeed; sprite.a_speed = aspeed

Arguments

sprite handle of the created sprite

rgbaSpeed amount to add to the red, green, blue and opacity of the sprite at each updatesprites
call

rSpeed amount to add to the red colour of the sprite at each updatesprites call

gSpeed amount to add to the blue colour of the sprite at each updatesprites call

bSpeed amount to add to the green colour of the sprite at each updatesprites call

aSpeed amount to add to the opacity of the sprite at each updatesprites call

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 20, 20 })
rv = -0.5
gv = 0.5
bv = 0

loop
 clear()
 sc = getSpriteColour(ship)
 if sc.r > 1 or sc.r < 0 then
 rv = -rv

268

 endIf
 if sc.b > 1 or sc.b < 0 then
 gv = -gv
 endIf
 setSpriteColourSpeed(ship, { rv, gv, bv, 0 })
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

getSpriteColour(), getSpriteColourSpeed(), setSpriteColour()

269

setSpriteDepth()

Purpose

Set a sprites depth

Description

Sets the visual depth of the sprite. For drawing, sprites will automatically be sorted by their depth
from negative (earliest drawing) to positive (latest drawing).

Syntax
setSpriteDepth(sprite, depth)

sprite.depth = depth

Arguments

sprite The handle of the created sprite

depth The visual depth of the sprite

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = []
for i = 0 to 2 loop
 ship[i] = createSprite()
 setSpriteImage(ship[i], image)
 setSpriteScale(ship[i], { 5, 5 })
 setSpriteDepth(ship[i], i)
repeat

setSpriteRotation(ship[0], 270)
setSpriteLocation(ship[0], { 0, gHeight() /2 })
setSpriteLocation(ship[1], { gWidth()/ 2, 0 })
setSpriteSpeed(ship[0], { 240, 0 })
setSpriteSpeed(ship[1], { 0, 120 })
setSpriteColour(ship[1], { 0, 0, 1, 1 })

while ship[0].x < gwidth() loop
 clear()
 printAt(0, 0, "Blue ship is drawn first so red ship passes over it")
 updateSprites()
 drawSprites()
 update()
repeat

270

Associated Commands

getSpriteDepth()

271

setSpriteImage()

Purpose

Change the image associated with a sprite

Description

Set the sprites image to the one specified

Syntax
setSpriteImage(sprite, image)

sprite.image = image

Arguments

sprite handle of the sprite

image handle of the image

Example
image = []
image[1] = loadImage("Untied Games/Enemy A", false)
image[2] = loadImage("Untied Games/Enemy B", false)
enemy = createSprite()
setSpriteImage(enemy, image[1])
setSpriteAnimation(enemy, 0, 4, 20)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(enemy, lastpos)
setSpriteScale(enemy, { 8, 8 })
current = 1
last = 1

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Press A for image 1 and B for image 2")
 if c.a then
 current = 1
 endIf
 if c.b then
 current = 2
 endIf
 if current != last then
 setSpriteImage(enemy, image[current])
 setSpriteAnimation(enemy, 0, 4, 20)
 last = current

272

 endIf
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

createSprite(), getSpriteImage(), getSpriteImageSize(), setSpriteText()

273

setSpriteLocation()

Purpose

Position a sprite on the screen

Description

Set the horizontal and vertical position of a sprite

Syntax
setSpriteLocation(sprite, pos)

setSpriteLocation(sprite, xpos, ypos)

sprite.x = xpos; sprite.y = ypos

Arguments

sprite handle of the created sprite

pos horizontal and vertical position on the screen in pixels { x, y }

xpos horizontal position on the screen in pixels

ypos vertical position on the screen in pixels

Example
radians(true)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 8, 8 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick to control sprite")
 setSpriteSpeed(ship, { 480 * c.lx, -480 * c.ly })
 curpos = getSpriteLocation(ship)
 if curpos != lastpos then
 setSpriteRotation(ship, -pi / 2 + atan2(curpos.y - lastpos.y, curpos.x - lastpos.x))
 lastpos = curpos
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

274

Associated Commands

getSpriteLocation(), getSpriteOrigin(), setSpriteOrigin()

275

setSpriteOrigin()

Purpose

Change the origin point of a sprite

Description

By default the origin of a sprite (0, 0) is the centre. This function allows you to change it to be, for
example, the top left

Syntax
setSpriteOrigin(sprite, pos)

setSpriteOrigin(sprite, xpos, ypos)

Arguments

sprite handle of the sprite

pos horizontal and vertical origin position relative to the centre { x, y }

xpos horizontal origin position relative to the centre

ypos vertcal origin position relative to the centre

Example
image = loadImage("Untied Games/Enemy A", false)
enemy = createSprite()
setSpriteImage(enemy, image)
setSpriteAnimation(enemy, 0, 4, 20)
setSpriteLocation(enemy, { 0, 0 })
size = getSpriteSize(enemy)
setSpriteScale(enemy, { 8, 8 })

loop
 clear()
 origin = getSpriteOrigin(enemy)
 printAt(20, 10, "Sprite origin x = ", origin.x, " y = ", origin.y)
 printAt(20, 11, "Press A to move origin to the top left")
 printAt(20, 12, "Press B to move origin to the centre")
 c = controls(0)
 if c.a then
 setSpriteOrigin(enemy, { -size.x / 2, -size.y / 2 })
 endIf
 if c.b then
 setSpriteOrigin(enemy, { 0, 0 })
 endIf

276

 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

getSpriteLocation(), getSpriteOrigin(), setSpriteLocation()

277

setSpriteRotation()

Purpose

Rotate a sprite

Description

Set the rotation angle of a sprite

Syntax
setSpriteRotation(sprite, angle)

sprite.rotation = angle

Arguments

sprite handle of the created sprite

rotation angle in default units

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 8, 8 })

for angle = 0 to 360 loop
 clear()
 setSpriteRotation(ship, angle)
 drawSprites()
 update()
repeat

278

Associated Commands

getSpriteRotation(), getSpriteRotationSpeed(), setSpriteRotationSpeed()

279

setSpriteRotationSpeed()

Purpose

Set a sprites rotation speed

Description

Set a sprites speed of rotation. This is the amount that the sprite rotation angle is changed by
when updatesprites is called

Syntax
setSpriteRotationSpeed(sprite, rotationSpeed)

sprite.rotation_speed = rotationSpeed

Arguments

sprite handle of the created sprite

*rotationSpeedamount to add to the rotation angle of the sprite at each updatesprites call

Example
radians(true)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 10, 10 })
rv = 0
maxrv = 30 // max rotation speed
accrv = 0.3 // accelaration

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick left or right to change rotation speed")
 rv = rv + c.lx * accrv
 if abs(rv) > maxrv then
 rv = rv / abs(rv) * maxrv
 endIf
 setSpriteRotationSpeed(ship, rv)
 updateSprites()
 drawSprites()
 update()
repeat

280

Associated Commands

getSpriteRotation(), getSpriteRotationSpeed(), setSpriteRotation()

281

setSpriteScale()

Purpose

Scale a sprite

Description

Scale a sprite up or down in the horizontal and vertical axis

Syntax
setSpriteScale(sprite, scale)

setSpriteScale(sprite, { xScale, yScale })

sprite.xscale = xScale; sprite.yscale = yScale

Arguments

sprite handle of the created sprite

scale amount to scale the sprite in the horizontal and vertical axes { x, y }

xScale amount to scale the sprite in the horizontal axis

yScale amount to scale the sprite in the vertical axis

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 5, 5 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick to resize sprite")
 setSpriteScale(ship, { 10 * abs(c.lx) + 5, 10 * abs(c.ly) + 5 })
 updateSprites()
 drawSprites()
 update()
repeat

282

Associated Commands

getSpriteScale(), getSpriteScaleSpeed(), getSpriteSize(), setSpriteScaleSpeed()

283

setSpriteScaleSpeed()

Purpose

Set a sprites scale speeds

Description

Set a sprites scaling speeds. These are the amount that the sprite scale is changed by in the
horizontal and vertical axes when updatesprites is called

Syntax
setSpriteScaleSpeed(sprite, scaleSpeed)

setSpriteScaleSpeed(sprite, xScaleSpeed, yScaleSpeed)

sprite.xscale_speed = xScaleSpeed; sprite.yscale_speed = yScaleSpeed

Arguments

sprite handle of the created sprite

scaleSpeed amount to add to the horizontal and vertical scale of the sprite at each updatesprites
call { x, y }

xScaleSpeed amount to add to the horizontal scale of the sprite at each updatesprites call

yscaleSpeed amount to add to the vertical scale of the sprite at each updatesprites call

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 1, 1 })
sv = 0
maxsv = 30 // max scale speed
accsv = 0.6 // accelaration

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick left or right to change scale speed")
 sv = sv + c.lx * accsv
 if abs(sv) > maxsv then
 sv = sv / abs(sv) * maxsv
 endIf

284

 setSpriteScaleSpeed(ship, { sv, sv })
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

getSpriteScale(), getSpriteScaleSpeed(), setSpriteScale()

285

setSpriteSpeed()

Purpose

Set a sprites speed

Description

Set a sprites horizontal and vertical speed. This is the amount that the sprite is moved by in each
axis when updatesprites is called

Syntax
setSpriteSpeed(sprite, speed)

setSpriteSpeed(sprite, xspeed, yspeed)

sprite.x_speed = xspeed; sprite.y_speed = yspeed

Arguments

sprite handle of the created sprite

speed amount to add to the x and y positions of the sprite at each updatesprites call { x, y }

xspeed amount to add to the x position of the sprite at each updatesprites call

yspeed amount to add to the y position of the sprite at each updatesprites call

Example
radians(true)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 8, 8 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left joystick to control sprite")
 setSpriteSpeed(ship, { 600 * c.lx, -600 * c.ly })
 curpos = getSpriteLocation(ship)
 if curpos != lastpos then
 setSpriteRotation(ship, -pi / 2 + atan2(curpos.y - lastpos.y, curpos.x - lastpos.x))
 lastpos = curpos
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

286

Associated Commands

getSpriteSpeed()

287

setSpriteText()

Purpose

Create a text sprite

Description

Create a sprite containing text in the specified font size and colour

Syntax
setSpriteText(sprite, fontsize, tint, arguments)

Arguments

sprite handle of the sprite

fontsize fontsize of the text

tine colour of the text

arguments comma separated list of text arguments

Example
image = loadImage("Untied Games/Enemy A", false)
sprite = []
for i = 0 to 4 loop
 sprite[i] = createSprite()
 setSpriteText(sprite[i], 50, red, "Sprite ", i)
repeat

loop
 clear()
 printAt(0, 0, "Press buttons X, A, Y and B to draw sprites")
 updateSprites()
 c = controls(0)
 if c.x then
 drawSprite(sprite[0])
 endif
 if c.a then
 drawSprite(sprite[1])
 endif
 if c.b then
 drawSprite(sprite[2])
 endif
 if c.y then
 drawSprite(sprite[3])
 endif

288

 update()
repeat

Associated Commands

createSprite(), setSpriteImage()

289

setSpriteVisibility()

Purpose

Hide or reveal a sprite

Description

Sets the visibility of a sprite. If false then the sprite is not displayed

Syntax
setSpriteVisibility(sprite, visibility)

sprite.visible = show

Arguments

sprite handle of the sprite

visibility if true then the sprite is displayed

Example
image = loadimage("Untied Games/Enemy A", false)
enemy = createsprite()
setSpriteImage(enemy, image)
speed = 20
setSpriteAnimation(enemy, 0, 4, speed)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(enemy, lastpos)
setSpriteScale(enemy, { 8, 8 })

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Press the A button to show sprite")
 setSpriteVisibility(enemy, c.a)
 updateSprites()
 drawSprites()
 update()
repeat

290

Associated Commands

getSpriteVisibility()

291

setVertex()

Purpose

Sets the screen position of a vertex (point) in a shape

Description

Used to change the on-screen position of a vertex in a shape drawn with drawShape()

Syntax
setVertex(shape, vertex, position)

Arguments

shape Handle which stores the shape in question

position Vector describing the desired x and y position of the supplied vertex

vertex Float index of the desired vertex (begins at 0, clockwise)

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(),
setVertexColour(), setVertexLineStyle()

292

setVertexColour()

Purpose

Sets the vertex colour of a shape drawn with drawShape()

Description

Used to adjust the tint (colour) of a supplied vertex in a shape. Creates a gradient toward other
vertex colours

Syntax
setVertexColour(shape, vertex, colour)

Arguments

shape Handle of the shape in question

vertex Number of the desired vertex (0 - N)

colour Vector (RGBA) colour of the desired vertex

Example
// draw a multicoloured rectangle on the screen
box1 = createBox(gwidth() / 2, gheight() / 2, gwidth(), gheight())

setVertexColour(box1, 0, bisque)
setVertexColour(box1, 1, cyan)
setVertexColour(box1, 2, fuzeblue)
setVertexColour(box1, 3, fuzepink)

drawShape(box1)
update()
sleep(3)

293

Associated Commands

createLine(), createLineStrip(), createCurve(), createCircle(), createTriangle(), createPoly(),
createStar(), createBox(), copyShape(), deleteShape(), drawShape(), joinShapes(), moveShape(),
getShapeBounds(), getShapeLocation(), getShapeRotation(), setShapeRotation(), rotateShape(),
getShapeScale(), setShapeScale(), scaleShape(), getShapeTint(), setShapeTint(), numVerts(),
getVertex(), setVertex(), getVertexColour(), getVertexLineThickness(), setVertexLineStyle(),
setShapeColour(), setShapeLineStyle(), setShapeScaleModeLocal()

294

setVertexLineStyle()

Purpose

Set the draw style for a vertex line

Description

Used to change the colour and thickness of a vertex line in a shape drawn with drawShape()

Syntax
setVertexLineStyle(shape, vertex, thickness, tint)

Arguments

shape Handle which stores the shape in question

vertex Integer index of the desired vertex (begins at 0, clockwise)

thickness Float describing the thickness (in pixels) of the line through the supplied vertex

tint Vector (RGBA) to set the colour of the line through the supplied vertex

Example

Associated Commands

copyShape(), createBox(), createCircle(), createCurve(), createLine(), createLineStrip(),
createPoly(), createStar(), createTriangle(), deleteShape(), drawShape(), getShapeBounds(),
getShapeLocation(), getShapeRotation(), getShapeScale(), getShapeTint(), getVertex(),
getVertexColour(), getVertexLineColour(), getVertexLineThickness(), joinShapes(), moveShape(),
numVerts(), rotateShape(), scaleShape(), setShapeColour(), setShapeLineStyle(),
setShapeRotation(), setShapeScale(), setShapeScaleModeLocal(), setShapeTint(), setVertex(),
setVertexColour()

295

setView()

Purpose

Set custom screen co-ordinates for drawing

Description

Allows user to input their own screen co-ordinates without changing screen resolution.

Syntax
setView(left, top, right, bottom)

Arguments

left value for the left hand side of the view

top value for the top of the view

right value for the right hand side of the view

bottom value for the bottom of the view

Example
image = loadImage("Untied Games/Enemy small top C", false)

loop
 clear()
 setView(0, 0, imageSize(image).x, imageSize(image).y)
 // Image will fill the view
 drawImage(image, 0, 0)
 update()
repeat

Associated Commands

296

tileSize()

Purpose

Get the size of a tile in a tiled image

Description

Get the size of the spcified tile in the specified image

Syntax
size = tileSize(image, tile)

Arguments

image handle of the image

tile tile number to find the size of (zero based)

size size of the specified tile { x, y }

Example
roll = 0
clear()
image = loadImage("Colin Brown/Dice", false)
size = tileSize(image, 0)
for i = 1 to 10 loop
 clear()
 roll = random(6) + 1
 x = size.x - (size.x * (roll % 2))
 y = size.y * (ceil(roll / 2) - 1)
 drawImage(image, { x, y, size.x, size.y }, { 0, 0, size.x, size.y })
 update()
 sleep(0.3)
repeat
printAt(0, 15, "You rolled a ", roll)
update()
sleep(3)

Associated Commands

297

triangle()

Purpose

Draw a triangle

Description

Draws a filled or outline triangle with vertices at the given points and in the specified colour.

Syntax
triangle(point1, point2, point3, colour, outline)

Arguments

point1 screen coordinates of first point in pixels

point2 screen coordinates of second point in pixels

point3 screen coordinates of second point in pixels

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

outline If true then only the outline is drawn otherwise the shape is filled.

Example
// Draw 100 random triangles
clear()
for i = 1 to 100 loop
 // Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, random(101) / 100 }
 point1 = { random(gWidth()), random(gHeight()) }
 point2 = { random(gWidth()), random(gHeight()) }
 point3 = { random(gWidth()), random(gHeight()) }
 outline = random(2)
 triangle(point1, point2, point3, col, outline)
 update()
repeat

for i = 1 to 100 loop
 update()
repeat

298

Associated Commands

box(), circle(), line()

299

unloadMap()

Purpose

Unload the current tile map

Description

Unload the current tile map so that another one can be loaded

Syntax

`````` 

Arguments 

Example 
// To view this map demo, please load the project "Map Commands Demo" from FUZE Programs.  
// Maps must be stored in the project you wish to load them into. 
 
maps = [ 
    "map1", 
    "map2" 
] 
 
m = 0 
layer = false 
 
press = [ 
    .a = false, 
    .up = false 
] 
 
loadMap( maps[m] ) 
setSpriteCamera( 0, 0, 2 ) 
 
loop 
    centerSpriteCamera( 0, 0 ) 
    clear() 
     
    c = controls( 0 ) 
     
    if !c.a then 
        press.a = false 
    endIf 
    if !c.up then 
        press.up = false 
    endIf 
 
    drawMapLayer( 0 ) 
     



300 
 

    if layer then 
        drawMapLayer( 1 ) 
    endIf 
 
    if c.up and !press.up then 
        press.up = true 
        layer = !layer 
    endIf 
 
    if c.a and !press.a then 
        press.a = true 
        unloadMap() 
        m += 1 
        if m >= 2 then 
            m = 0 
        endIf 
        loadMap( maps[m] ) 
    endIf 
 
    printAt( 0, 0, "Press A button to swap between maps" ) 
    printAt( 0, 2, "Currently viewing: " + maps[m] ) 
    printAt( 0, 4, "Press Up directional button to toggle additional layers" ) 
 
    update() 
repeat 

Associated Commands 

drawMap(), drawMapLayer(), loadMap() 

  



301 
 

 

updateSprite() 

Purpose 

Process speed additions for a sprite 

Description 

Adds the current speed values to the position, rotation and colour the sprites causing it to move, 
rotate or change colour when drawn. 

Syntax 
updateSprite( sprite ) 
   
updateSprite( sprite, deltatime ) 

Arguments 

sprite handle of the sprite 

deltatime time difference between the current frame and the previous frame, in seconds 

Example 
image = loadImage( "Untied Games/Enemy A", false ) 
enemy = [] 
for i = 0 to 4 loop 
    enemy[i] = createSprite() 
    setSpriteImage( enemy[i], image ) 
    setSpriteAnimation( enemy[i], 0, 4, 20 ) 
    setSpriteLocation( enemy[i], { ( i % 2 ) * 400 + 400, int(i / 2) * 300 + 200 } ) 
    setSpriteScale( enemy[i], { 4, 4 } ) 
repeat 
 
loop 
    clear() 
    updateSprite( enemy[1] ) 
    updateSprite( enemy[2], deltaTime() / 2 ) 
    updateSprite( enemy[3], deltaTime() * 2 ) 
    drawsprites() 
    update() 
repeat 



302 
 

 

Associated Commands 

createSprite(), deltaTime(), drawSprite(), drawSprites(), removeSprite(), updateSprites(), 
updateSprite() 

  



303 
 

 

updateSprites() 

Purpose 

Process speed additions for all sprites 

Description 

Adds the current speed values to the position, rotation and colour of all sprites causing them to 
move, rotate or change colour when drawn. 

Syntax 
updateSprites( ) 
 
updateSprites( sprites ) 
 
updateSprites( deltatime ) 
 
updateSprites( sprites, deltatime ) 

Arguments 

sprites array of sprites to be updated 

deltatime time difference between the current frame and the previous frame, in seconds 

Example 
image = loadImage( "Untied Games/Enemy A", false ) 
enemy = [] 
for i = 0 to 4 loop 
    enemy[i] = createSprite( ) 
    setSpriteImage( enemy[i], image ) 
    setSpriteAnimation( enemy[i], 0, 4, 20 ) 
    setSpriteLocation( enemy[i], { ( i % 2 ) * 400 + 400, int( i / 2 ) * 300 + 200 } ) 
    setSpriteScale( enemy[i], { 4, 4 } ) 
repeat 
 
loop 
    clear() 
    printAt( 0, 0, "Press X for normal speed" ) 
    printAt( 0, 1, "Press A for half speed" ) 
    printAt( 0, 2, "Press B for double speed" ) 
    c = controls( 0 ) 
    if c.x then 
        updateSprites() 
    endIf 
    if c.a then 
        updateSprites( enemy, deltaTime() / 2 ) 
    endIf 
    if c.b then 



304 
 

        updateSprites( enemy, deltaTime() * 2 )  
    endIf 
    drawSprites() 
    update() 
repeat 

 

Associated Commands 

createSprite(), deltaTime(), drawSprite(), drawSprites(), removeSprite(), updateSprites(), 
updateSprite() 

  



305 
 

 

uploadImage() 

Purpose 

Create an image in code 

Description 

Create an image from pixel data stored in the actual code of the program 

Syntax 
handle = uploadImage( pixeldata, width, height, filter ) 

Arguments 

pixeldata An array of (width x height) colours 

width Desired on-screen width in pixels 

height Desired on-screen width in pixels 

filter Sets filtering on or off - generally on for real images and off for pixel art 

handle handle of the image 

Example 
t = { 0, 0, 0, 0 } // transparent 
w = white 
alien = [  
    t, t, t, w, w, t, t, t, 
    t, t, w, w, w, w, t, t, 
    t, w, w, w, w, w, w, t, 
    w, w, w, w, w, w, w, w, 
    w, w, t, w, w, t, w, w, 
    w, w, w, t, t, w, w, w, 
    w, w, t, w, w, t, w, w, 
    w, w, w, w, w, w, w, w, 
    w, w, t, w, w, t, w, w  
] 
 
alienimage = uploadImage( alien, 8, 9, false ) 
drawImage( alienimage, 0, 0, 50 ) 
 
loop 
    update() 
repeat 



306 
 

 

Associated Commands 

clear(), createImage(), drawImage(), drawImageEx(), drawQuad(), drawSheet(), loadImage(), 
update() 

  



307 
 

 

 

 

 

 

 

 

 

 

 

 

 

                           

  

3D Graphics 
  



308 
 

 

animationLength() 

Purpose 

Find the length of a 3D animation 

Description 

Some 3D models contain animation sequences. This finds the length of the specified animation 
sequence 

Syntax 
length = animationLength( object, animation ) 

Arguments 

length length of animation in seconds 

object handle of the animated 3D object 

animation index of the animation 

Example 
cb = loadModel( "Kat/Colin" ) 
pointLight( { 0.5, 1.3, 2 }, white, 4 ) 
setAmbientLight( { 0.5, 0.5, 0.5 } ) 
colin = placeObject( cb, { 0, 0, 0 }, { 1, 1, 1 } ) 
setCamera( { 0, 10, 10 }, { 0, 5, 0 } ) 
animID = 7 // the robot 
animLength = animationLength( colin, animID ) 
animFrame = 0 
loop 
    clear() 
    animFrame = animFrame + 1/60 
    if animFrame >= animLength then 
        animframe = 0 
    endIf 
    updateAnimation( colin, animID, animFrame ) 
    drawObjects() 
    printAt( 0, 0, "length: ", animLength, " frame: ", animFrame ) 
    update() 
repeat 



309 
 

 

Associated Commands 

numAnimations(), updateAnimation() 

  



310 
 

 

createTerrain() 

Purpose 

Create a 3D terrain 

Description 

Create a 3D terrain by setting the height and colour of points on a grid 

Syntax 
handle = createTerrain( gridsize, filter ) 

Arguments 

handle identifer of the created terrain 

gridsize size of the grid (length of one side) 

filter Smoothing filter (0 = no filter) 

Example 
gsize = 64 
landscape = createTerrain( gsize, 1 ) 
height = 0 
colour = white 
 
for x = 0 to gsize loop 
    for y = 0 to gsize loop 
        d = distance ( { x, y }, { gsize / 2, gsize / 2 } ) 
        if d > 24 then    // sea level 
            height = 0 
            colour = blue 
        else 
            if d > 18 then  // beach 
                height = 1 
                colour = yellow 
            else                  // hills 
                height = rnd( 2 ) + 1 
                colour = green 
            endIf 
        endIf 
        setTerrainPoint( landscape, x, y, height, colour ) 
    repeat 
repeat 
 
setCamera( { gsize / 2, 50, gsize / 2 }, { gsize / 2.0, 0, gsize / 2.00001 } ) 
setAmbientLight( { 0.5, 0.5, 0.5 } ) 



311 
 

island = placeObject( landscape, { gsize / 2, 0, gsize / 2 }, { 1, 1, 1 } ) 
 
loop 
    c = controls( 0 ) // rotate using joysticks 
    rotateObject( island, { 1, 0, 0 }, c.ly ) 
    rotateObject( island, { 0, 0, 1 }, c.lx ) 
    rotateObject( island, { 0, 1, 0 }, c.rx ) 
    drawobjects() 
    update() 
repeat 

 

Associated Commands 

setTerrainPoint(), updateTerrain() 

  



312 
 

 

drawObjects() 

Purpose 

Draw all 3D objects 

Description 

Draws all of the current 3D objects to the frameBuffer in their current positions using the current 
camera position and lighting 

Syntax 
drawObjects( ) 

Arguments 

Example 
obj = placeObject( cube, { 0, 0, 0 }, { 2, 2, 2 } ) 
setObjectMaterial( obj, red, 1, 1 ) 
setCamera( { 5, 5, 10 }, { 0, 0, 0 } ) 
light = pointLight( { 0, 4, 2 }, white, 100 ) 
x = 0 
 
loop 
    clear() 
    c = controls( 0 )  
    setLightPos( light, { x, 4, 2 } ) 
    if c.left then 
        x = x - 0.2 
    endIf 
    if c.right then 
        x = x + 0.2 
    endIf 
    rotateObject( obj, { 1, 1, 1 }, 0.5 ) 
    drawObjects() 
    printAt( 0, 0, "Use left and right directional buttons to move light source: ", x ) 
    update() 
repeat 



313 
 

 

Associated Commands 

placeObject(), pointLight(), rotateObject(), setCamera(), setObjectMaterial() 

  



314 
 

 

loadModel() 

Purpose 

Load a 3D model ready for display 

Description 

Load a 3D model that can then be placed in the screen buffer using placeobject and displayed 
using drawobjects 

Syntax 
handle = loadModel( filename ) 

Arguments 

handle variable which stores the desired 3D model file 

filename relative path of the 3D model to load 

Example 
cb = loadModel( "Kat/Colin" ) 
pointLight( { 0.5, 1.3, 2 }, white, 4 ) 
setAmbientLight( { 0.5, 0.5, 0.5 } ) 
colin = placeObject( cb, { 0, 0, 0 }, { 1, 1, 1 } ) 
setCamera( { 0, 10, 10 }, { 0, 5, 0 } ) 
animID = 6 // walking 
animLength = animationLength( colin, animID ) 
animFrame = 0 
 
loop 
    clear() 
    animframe = animframe + 1/60 
    if animframe >= animlength then 
        animframe = 0 
    endIf 
    updateAnimation( colin, animID, animframe ) 
    drawObjects() 
    printAt( 0, 0, "length: ", animlength, " frame: ", animframe ) 
    update() 
repeat 



315 
 

 

Associated Commands 

drawObjects(), placeObject(), removeObject(), rotateObject(), setObjectMaterial() 

  



316 
 

 

numAnimations() 

Purpose 

Find the length of a 3D animation 

Description 

Some 3D models contain animation sequences. This finds the number of animations within a given 
3D model 

Syntax 
count = numAnimations( object ) 

Arguments 

object handle of the animated 3D object 

count number of animations in the model 

Example 
cb = loadModel( "Kat/Colin" ) 
pointLight( { 0.5, 1.3, 2 }, white, 4 ) 
setAmbientLight( { 0.5, 0.5, 0.5 } ) 
colin = placeObject( cb, { 0, 0, 0 }, { 1, 1, 1 } ) 
setCamera( { 0, 10, 10 }, { 0, 5, 0 } ) 
animcount = numAnimations( colin ) 
animID = 0 
animframe = 0 
 
loop 
    clear() 
    c = controls( 0 ) 
    if c.up then // up to increase animation id 
        animID += 1 
        sleep( 0.3 ) 
    endIf 
    if c.down then // down to decrease animation id 
        animID -= 1 
        sleep( 0.3 ) 
    endIf 
    animID = clamp( animID, 0, animcount - 1 ) 
    animLength = animationLength( colin, animID ) 
    animframe = animframe + 1 / 60 
    if animframe >= animlength then 
        animframe = 0 
    endIf 
    updateAnimation( colin, animID, animframe ) 



317 
 

    drawObjects() 
    printAt( 0, 0, "Use up/down arrows to change ID: ", int( animID ) ) 
    printAt( 0, 1, "length: ", animlength, " frame: ", animframe ) 
    update() 
repeat 

 

Associated Commands 

animationLength(), updateAnimation() 

  



318 
 

 

objectPointAt() 

Purpose 

Set where a 3D object is pointing 

Description 

Change the point where a 3D object is pointing to 

Syntax 
objectPointAt( handle, point ) 

Arguments 

handle variable which stores the placed 3D object 

point vector containing the point in 3 dimensions { x, y, z } 

Example 
cb = loadModel( "Kat/Colin" ) 
pointLight( { 0.5, 1.3, 2 }, white, 4 ) 
setambientlight( { 0.5, 0.5, 0.5 } ) 
pos = { 0, 0, 0 } 
scale = { 1, 1, 1 } 
colin = placeObject( cb, pos, scale ) 
point = { 0, 10, 10 } 
setcamera( point, { 0, 5, 0 } ) 
animID = 10 
animlength = animationLength( colin, animID ) 
animframe = 0 
 
loop 
    clear() 
    c = controls( 0 ) 
    if c.left then 
        point.x -= 0.1 
    endIf 
    if c.right then 
        point.x += 0.1 
    endIf 
    if c.up then 
        point.y += 0.1 
    endIf 
    if c.down then 
        point.y -= 0.1 
    endIf 
    objectPointAt( colin, point ) 



319 
 

    animframe = animframe + 1 / 60 
    if animframe >= animlength then 
        animframe = 0 
    endIf 
    updateAnimation( colin, animID, animframe ) 
    drawObjects() 
    printAt( 0, 0, "Use left joypad to move where object is pointing" ) 
    update() 
repeat 

 

Associated Commands 

drawObjects(), loadModel(), objectPointAt(), placeObject(), removeObject(), rotateObject(), 
setObjectMaterial(), setObjectPos(), setObjectScale() 

  



320 
 

 

placeObject() 

Purpose 

Place a 3D object 

Description 

Place one of the predefined 3D objects in the screen buffer at the specified location and scale 

Syntax 
handle = placeObject( object, location, scale ) 

Arguments 

handle handle of the placed 3D object 

object handle of the 3D object or predefined object (cube, sphere, pyramid, cone, cylinder, wedge 
and hemisphere) 

location position vector in 3 dimensional space { x, y, z } 

scale scale vector in 3 dimensional space { x, y, z } 

Example 
obj = placeObject( cube, { 0, 0, 0 }, { 2, 2, 2 } ) 
setObjectMaterial( obj, red, 1, 1 ) 
setCamera( { 5, 5, 10 }, { 0, 0, 0 } ) 
light = pointLight( { 0, 4, 2 }, white, 100 ) 
x = 0 
 
loop 
    clear() 
    c = controls( 0 ) 
    setLightPos( light, { x, 4, 2 } ) 
    if c.left then 
        x = x - 0.2 
    endIf 
    if c.right then 
        x = x + 0.2 
    endIf 
    rotateObject( obj, { 1, 1, 1 }, 0.5 ) 
    drawObjects() 
    printat( 0, 0, "Use left and right arrows to move light source: ",x ) 
    update() 
repeat 



321 
 

 

Associated Commands 

drawObjects(), loadModel(), objectPointAt(), removeObject(), rotateObject(), setObjectMaterial(), 
setObjectPos(), setObjectScale() 

  



322 
 

 

pointLight() 

Purpose 

Creates a pinpoint light source in 3D space 

Description 

Creates a pinpoint light source in the specified position of the specified colour and brightness 

Syntax 
handle = pointLight( position, colour, brightness ) 

Arguments 

handle The handle of the light source 

position A position vector in 3 dimensional space { x, y, z } where the light source is located 

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1 

brightness A value to indicate the brightness of the light source 

Example 
setcamera( {0, 10, 10 }, { 0, 0, 0 } ) 
bright = 50 
light = pointLight( { 5, 5, 5 }, red, bright ) 
ballModel = loadModel( "Kat/Discoball" ) 
ball = placeObject( ballmodel, { 0, 0, 0 }, { 10, 10, 10 } ) 
loop 
    c = controls( 0 ) 
    if (c.up) then 
        bright = bright + 1 
    endIf 
    if (c.down) then 
        bright = bright - 1 
    endIf 
    bright = clamp( bright, 0, 100 ) 
    setlightbrightness( light, bright ) 
    rotateobject( ball, { 0, 1, 0 }, 1.0 ) 
    drawobjects() 
    printat( 0, 0, "Use up and down arrows to adjust brightness: ", bright ) 
    update() 
repeat 



323 
 

 

Associated Commands 

pointShadowLight(), removeLight(), setAmbientLight(), setLightBrightness(), setLightColour(), 
setLightDir(), setLightPos(), setLightSpread(), spotLight(), worldLight(), worldShadowLight() 

  



324 
 

 

pointShadowLight() 

Purpose 

Creates a pinpoint light source in 3D space that casts a shadow 

Description 

Creates a pinpoint light source in the specified position of the specified colour and brightness that 
casts a shadow 

Syntax 
handle = pointShadowLight( position, colour, brightness ) 

Arguments 

handle The handle of the light source 

position A position vector in 3 dimensional space { x, y, z } where the light source is located 

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1 

brightness A value to indicate the brightness of the light source 

resolution resolution of shadows (higher is smoother) 

Example 
setCamera( { 0, 4, 10 }, { 0, 0, 0 } ) 
 
obj = [ 
    placeObject( cube, { 0, 0, 0 }, { 4, 0.1, 4 } ) 
    placeObject( cube, { 0, 2, 0 }, { 1, 1, 1 } ) 
] 
 
setObjectMaterial( obj[0], bisque, 0, 1 ) 
setObjectMaterial( obj[1], cyan, 0, 1 ) 
 
lightpos = { 0, 6, 2 } 
light = pointShadowLight( lightpos, white, 50, 1024 ) 
 
loop 
    clear() 
    c = controls( 0 ) 
    lightpos += { c.lx, c.ry, -c.ly } * 0.1 
    setLightPos( light, lightpos ) 
    rotateObject( obj[1], { 0, 1, 0 }, 1 ) 
    drawObjects() 



325 
 

    printAt( 0, 0, "Use Joy-Con Control Sticks to adjust light position" ) 
    printAt( 0, 2, " 

Associated Commands 

pointLight(), removeLight(), setAmbientLight(), setLightBrightness(), setLightColour(), 
setLightDir(), setLightPos(), setLightSpread(), spotLight(), worldLight(), worldShadowLight() 

  



326 
 

 

removeLight() 

Purpose 

Remove a light source 

Description 

Switches off a light source. The handle is invalid after removal and should not be used 

Syntax 
removeLight( light ) 

Arguments 

light handle of the light source 

Example 
setCamera( {0, 10, 10 }, { 0, 0, 0 } ) 
bright = 50 
light = worldLight( { -5, -5, -5 }, white, bright ) 
lighton = true 
ballmodel = loadModel( "Kat/Discoball" ) 
ball = placeObject( ballmodel, { 0, 0, 0 }, { 10, 10, 10 } ) 
 
loop 
    clear() 
    c = controls( 0 ) 
    if c.x and !lighton then 
        light = worldLight( { -5, -5, -5 }, white, bright ) 
        lighton = true 
    endIf 
    if c.a and lighton then  
        removeLight( light ) 
        lighton = false 
    endIf 
    rotateObject( ball, { 0, 1, 0 }, 1.0 ) 
    drawObjects() 
    printAt( 0, 0, "Press X to switch on the light" ) 
    printAt( 0, 1, "Press A to switch off the light" ) 
    update() 
repeat 



327 
 

 

Associated Commands 

pointLight(), pointShadowLight(), setLightBrightness(), setLightColour(), setLightDir(), 
setLightPos(), setLightSpread(), spotLight(), worldLight(), worldShadowLight() 

  



328 
 

 

removeObject() 

Purpose 

Remove a 3D object 

Description 

Remove a 3D object previously placed in the screen buffer by place object. The handle becomes 
invalid after removal and should not be used 

Syntax 
removeObject( handle ) 

Arguments 

handle variable which stores the placed 3D object 

Example 

``` cb = loadModel( “Kat/Colin” ) pointLight( { 0.5, 1.3, 2 }, white, 4 ) setAmbientLight( { 0.5, 0.5, 0.5 
}) colin = placeObject(cb, { 0, 0.295, 0 }, { 1, 1, 1 }) placed = true setCamera({ 0, 10, 10 }, { 0, 5, 0 }
) animID = 6 animlength = animationLength(colin, animID) animframe = 0

loop clear() c = controls(0) if c.x and placed then removeObject(colin) placed = false endIf if c.a
and !placed then colin = placeObject(cb, { 0, 0.295, 0 }, { 1, 1, 1 }) placed = true endIf if placed then
animframe = animframe + 1/60 if animframe >= animlength then animframe = 0 endIf
updateAnimation(colin, animID, animframe) endIf drawObjects() printAt(0, 0, “Press X to
remove”) printAt(0, 1, “Press A to place”) printAt(0, 2, “Frame:”, animframe) update() repeat```

Associated Commands

329

drawObjects(), loadModel(), objectPointAt(), placeObject(), rotateObject(), setObjectMaterial(),
setObjectPos(), setObjectScale()

330

rotateObject()

Purpose

Rotate a 3D object

Description

Rotate a 3D object through the specified axes and by the specified amount

Syntax
rotateObject(handle, axes, amount)

Arguments

handle The handle of the placed 3D object

axes vector which describes the axes of rotation { x, y, z } e.g. { 1, 0, 0 } rotates in the x axes only

amount Amount to rotate the object in degrees(0 to 360)

Example
obj = placeObject(cube, { 0, 0, 0 }, { 2, 2, 2 })
setObjectMaterial(obj, red, 1, 1)
setCamera({ 5, 5, 10 }, { 0, 0, 0 })
light = pointLight({ 0, 4, 2 }, white, 100)
x = 0

loop
 clear()
 c = controls(0)
 setLightPos(light, { x, 4, 2 })
 if c.left then
 x = x - 0.2
 endIf
 if c.right then
 x = x + 0.2
 endIf
 rotateObject(obj, { 1, 1, 1 }, 0.5)
 drawObjects()
 printAt(0, 0, "Use left and right arrows to move light source: ",x)
 update()
repeat

331

Associated Commands

drawObjects(), loadModel(), objectPointAt(), placeObject(), removeObject(), setObjectMaterial(),
setObjectPos(), setObjectScale()

332

setAmbientLight()

Purpose

Set the ambient light level

Description

Set the background light levels for red, green and blue

Syntax
setAmbientLight(colour)

Arguments

colour brightness vector for ambient light { red, green , blue }

Example
obj1 = placeObject(cube, { -3, 0, 0 }, { 1, 1, 1 })
obj2 = placeObject(cube, { 3, 0, 0 }, { 1, 1, 1 })
setObjectMaterial(obj1, white, 0, 0.05) // white, smooth, shiny
setObjectMaterial(obj2, white, 0, 0.05) // white, smooth, shiny
floor = placeObject(cube, { 0, -2, 0 }, { 10, 0.05, 10 })
setObjectMaterial(floor, grey, 0, 1) // grey, smooth, not shiny
setCamera({ 1, 0.5, 5 }, { 0, 0, 0 }) // back a bit and off centre, facing world centre
setAmbientLight({ 0.5, 0.2, 0.6 }) // light purple

loop
 rotateObject(obj1, { 1, 1, 1 }, 1) // in all directions by 1 degree
 rotateObject(obj2, { 1, 1, 1 }, -1) // in all directions by -1 degree
 drawObjects()
 update()
repeat

333

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setLightBrightness(), setLightColour(),
setLightDir(), setLightPos(), setLightSpread(), spotLight(), worldLight(), worldShadowLight()

334

setCamera()

Purpose

Set the position of the camera in 3D space

Description

Positions the camera in 3D space and where it is pointing to

Syntax
setCamera(location, target)

Arguments

location A position vector in 3 dimensional space { x, y, z } where the camera is located

target A position vector in 3 dimensional space { x, y, z } where the camera is pointing

Example
obj = placeObject(cube, { 0, 0, 0 }, { 2, 2, 2 })
setObjectMaterial(obj, red, 1, 1)
x = 5
y = 5
setCamera({ x, y, 10 }, { 0, 0, 0 })
light = pointLight({ 0, 4, 2 }, white, 100)

loop
 clear()
 c = controls(0)
 setCamera({ x, y, 10 }, { 0, 0, 0 })
 if c.left then
 x -= 0.2
 endIf
 if c.right then
 x += 0.2
 endIf
 if c.up then
 y += 0.2
 endIf
 if c.down then
 y -= 0.2
 endIf
 drawObjects()
 printAt(0, 0, "Use arrows to move camera")
 printAt(0, 1, "x = ", x, " y = ", y)
 update()
repeat

335

Associated Commands

drawObjects(), placeObject(), pointLight(), rotateObject(), setObjectMaterial()

336

setFov()

Purpose

Set the camera field of view in 3D space

Description

Sets the angular extent of the observable 3D space

Syntax
setFov(angle)

Arguments

angle angle of the extent of the observable 3D space

Example
obj1 = placeObject(cube, { -3, 0, 0 }, { 1, 1, 1 })
obj2 = placeObject(cube, { 3, 0, 0 }, { 1, 1, 1 })
setObjectMaterial(obj1, white, 0, 0.05) // white, smooth, shiny
setObjectMaterial(obj2, white, 0, 0.05) // white, smooth, shiny
floor = placeObject(cube, { 0, -2, 0 }, { 10, 0.05, 10 })
setObjectMaterial(floor, grey, 0, 1) // grey, smooth, not shiny
setCamera({ 1, 0.5, 5 }, { 0, 0, 0 }) // back a bit and off centre, facing world centre
fov = 60
worldLight({-1, -0.5, -0.5 }, white, 1)
loop
 c = controls(0)
 if c.up then
 fov += 0.5
 endIf
 if c.down then
 fov -= 0.5
 endIf
 fov = clamp(fov, 30, 90)
 setFov(fov)
 rotateObject(obj1, { 1, 1, 1 }, 1) // in all directions by 1 degree
 rotateObject(obj2, { 1, 1, 1 }, -1) // in all directions by -1 degree
 drawObjects()
 printAt(0, 0, "Move left joypad up or down to adjust fov: ", fov)
 update()
repeat

Associated Commands

setCamera()

337

setLightBrightness()

Purpose

Set the brightness of a light source

Description

Set the brightness of a light source to the specified value

Syntax
setLightBrightness(light, brightness)

Arguments

light handle of the light source

brightness brightness of the light source (0 - 100)

Example
setCamera({ 0, 10, 10 }, { 0, 0, 0 })
bright = 50
light = worldLight({ -1, -1, -1 }, white, bright)
ballmodel = loadModel("Kat/Discoball")
ball = placeObject(ballmodel, { 0, -0, 0 }, { 10, 10, 10 })
loop
 c = controls(0)
 if c.up then
 bright += 1
 endIf
 if c.down then
 bright -= 1
 endIf
 bright = clamp(bright, 0, 100)
 setLightBrightness(light, bright)
 rotateObject(ball, { 0, 1, 0 }, 1.0)
 drawObjects()
 printAt(0, 0, "Use up and down arrows to adjust brightness: ", bright)
 update()
repeat

338

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setAmbientLight(), setLightColour(),
setLightDir(), setLightPos(), setLightSpread(), spotLight(), worldLight(), worldShadowLight()

339

setLightColour()

Purpose

Set the colour of a light source

Description

Set the colour of a light source to the specified value

Syntax
setLightColour(light, colour)

Arguments

light handle of the light source

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

Example
setCamera({0, 10, 10 }, { 0, 0, 0 })
bright = 50
col = white
light = worldLight({ -5, -5, -5 }, col, bright)
ballmodel = loadModel("Kat/Discoball")
ball = placeObject(ballmodel, { 0, 0, 0 }, { 10, 10, 10 })

loop
 clear()
 c = controls(0)
 if c.x then
 col = red
 endIf
 if c.a then
 col = green
 endIf
 if c.b then
 col = blue
 endIf
 setLightColour(light, col)
 rotateObject(ball, { 0, 1, 0 }, 1.0)
 drawObjects()
 printAt(0, 0, "Press X for red light")
 printAt(0, 1, "Press A for green light")
 printAt(0, 2, "Press B for blue light")
 update()
repeat

340

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setAmbientLight(), setLightBrightness(),
setLightDir(), setLightPos(), setLightSpread(), spotLight(), worldLight(), worldShadowLight()

341

setLightDir()

Purpose

Set the direction of a light source

Description

Set the direction of a light source to the specified value

Syntax
setLightDir(light, direction)

Arguments

light handle of the light source

direction direction the light source is pointing { x, y, z }

Example
setCamera({ 0, 6, 10 }, { 0, 0, 0 })
setAmbientLight({ 0.1, 0.1, 0.1 })
lightDir = { 0, -1, -1 }
light = spotLight({ 0, 4, 4 }, lightDir, white, 50, 2)

obj = [
 placeObject(cube, { 0, 0, 0 }, { 4, 0.1, 4 }),
 placeObject(cube, { 0, 1.1, 0 }, { 1, 1, 1 })
]

setObjectMaterial(obj[0], white, 0, 1)
setObjectMaterial(obj[1], cyan, 0, 1)

loop
 c = controls(0)
 lightDir += { c.lx, c.ry, -c.ly } * 0.1
 setLightDir(light, lightDir)
 rotateObject(obj[1], { 0, 1, 0 }, 1.0)
 drawObjects()
 printAt(0, 0, "Use Joy-Con control sticks to adjust light direction")
 printAt(0, 2, "Left Control stick left and right adjusts the X direction: " + lightDir.x)
 printAt(0, 3, "Left Control stick up and down adjusts the Z direction: " + lightDir.z)
 printAt(0, 4, "Right Control stick up and down adjusts the Y direction: " + lightDir.y)
 update()
repeat

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setAmbientLight(), setLightBrightness(),
setLightColour(), setLightPos(), setLightSpread(), spotLight(), worldLight(), worldShadowLight()

342

setLightPos()

Purpose

Set the position of a light source

Description

Set the position of a light source to the specified value

Syntax
setLightPos(light, position)

Arguments

light handle of the light source

position A position vector in 3 dimensional space { x, y, z } where the light source is located

Example
obj = placeObject(cube, { 0, 0, 0 }, { 4, 0.1, 4 })
lightpos = { 0, 0, 0 }
light = pointLight(lightpos, white, 50)
setCamera({ 0, 4, 8 }, { 0, 0, 0 })

loop
 clear()
 c = controls(0)
 // Move the light position using the joysticks
 lightpos += { c.lx, c.ry, -c.ly } * 0.1
 // Restrict height control of light position
 lightpos.y = clamp(lightPos.y, 0.1, 10)
 setLightPos(light, lightPos)
 drawObjects()
 printAt(0, 0, "Use Joy-Con Control Sticks to adjust light position")
 printAt(0, 1, "Light X Position: " + str(lightPos.x))
 printAt(0, 2, "Light Y Position: " + str(lightPos.y))
 printAt(0, 3, "Light Z Position: " + str(lightPos.z))
 update()
repeat

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setAmbientLight(), setLightBrightness(),
setLightColour(), setLightDir(), setLightSpread(), spotLight(), worldLight(), worldShadowLight()

343

setLightSpread()

Purpose

Sets the spread of a light source

Description

Set the amount of spread of a light source to the specified value

Syntax
setLightSpread(light, spread)

Arguments

light handle of the light source

spread a measure of how much the light from the light source spreads

Example
setCamera({ 0, 6, 10 }, { 0, 0, 0 })
spread = 50
light = spotLight({ 0, 4, 0 }, { 4, 0.1, 4 }, white, 100, spread)

obj = [
 placeObject(cube, { 0, 0, 0 }, { 4, 0.1, 4 }),
 placeObject(cube, { 0, 1.1, 0 }, { 1, 1, 1 })
]

setObjectMaterial(obj[0], white, 0, 1)
setObjectMaterial(obj[1], cyan, 0, 1)

loop
 c = controls(0)
 spread += c.ly
 spread = clamp(spread, 0, 100)
 setLightSpread(light, spread)
 rotateObject(obj[1], { 0, 1, 0 }, 1)
 drawObjects()
 printAt(0, 0, "Use Joy-Con left Control Stick to adjust light spread: " + spread)
 update()
repeat

344

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setAmbientLight(), setLightBrightness(),
setLightColour(), setLightDir(), setLightPos(), spotLight(), worldLight(), worldShadowLight()

345

setObjectMaterial()

Purpose

Set the material of a 3D object

Description

Changes the way light behaves on the surface of the object.

Syntax
setObjectMaterial(handle, colour, metallic, roughness)

Arguments

handle The handle of the placed 3D object

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

metallic A flag to indictate whether the object is metallic(1) or non metallic(0)

roughness A value for the roughness of the objects between 0 and 1 (0 is completely smooth and 1
is very rough)

Example
obj = placeObject(sphere, { 0, 0, 0 }, { 2, 2, 2 })
setObjectMaterial(obj, red, 1, 1)
setCamera({ 5, 5, 10 }, { 0, 0, 0 })
light = pointLight({ 0, 4, 2 }, white, 50)

loop
 clear()
 c = controls(0)
 if c.a then
 setObjectMaterial(obj, red, 0, 1)
 endIf
 if c.b then
 setObjectMaterial(obj, red, 1, 0)
 endIf
 if c.x then
 setObjectMaterial(obj, red, 0, 0)
 endIf
 if c.y then
 setObjectMaterial(obj, red, 1, 1)
 endIf
 drawObjects()
 printAt(0, 0, "Use A, B, X and Y buttons to change object material")

346

 update()
repeat

Associated Commands

drawObjects(), loadModel(), objectPointAt(), placeObject(), removeObject(), rotateObject(),
setObjectPos(), setObjectScale()

347

setObjectPos()

Purpose

Set the position of a 3D object

Description

Change the scale factor used for the display of a 3D object and hence it’s relative size

Syntax
setObjectPos(handle, pos)

Arguments

handle variable which stores the placed 3D object

pos vector containing the position 3 dimensions { x, y, z }

Example
cb = loadModel("Kat/Colin")
pointLight({ 0.5, 1.3, 2 }, white, 4)
setAmbientLight({ 0.5, 0.5, 0.5 })
pos = { 0, 0, 0 }
scale = { 1, 1, 1 }
colin = placeObject(cb, pos, scale)
setCamera({ 0, 10, 10 }, { 0, 5, 0 })
animID = 6
animlength = animationLength(colin, animID)
animframe = 0

loop
 clear()
 c = controls(0)
 if c.left then
 pos.x -= 0.1
 endIf
 if c.right then
 pos.x += 0.1
 endIf
 if c.up then
 pos.y += 0.1
 endIf
 if c.down then
 pos.y -= 0.1
 endIf
 setObjectPos(colin, pos)
 animframe = animframe + 1 / 60

348

 if animframe >= animlength then
 animframe = 0
 endIf
 updateAnimation(colin, animID, animframe)
 drawObjects()
 printAt(0, 0, "Use arrows to move object")
 update()
repeat

Associated Commands

drawObjects(), loadModel(), objectPointAt(), placeObject(), removeObject(), rotateObject(),
setObjectMaterial(), setObjectScale()

349

setObjectScale()

Purpose

Set the size of a 3D object

Description

Change the scale factor used for the display of a 3D object and hence it’s relative size

Syntax
setObjectScale(handle, scale)

Arguments

handle variable which stores the placed 3D object

scale vector containing the scale factors in 3 dimensions { x, y, z }

Example
cb = loadModel("Kat/Colin")
pointLight({ 0.5, 1.3, 2 }, white, 4)
setAmbientLight({ 0.5, 0.5, 0.5 })
scale = { 1, 1, 1 }
colin = placeObject(cb, { 0, 0, 0 }, scale)
setcamera({ 0, 10, 10 }, { 0, 5, 0 })
animID = 6
animlength = animationLength(colin, animID)
animframe = 0

loop
 clear()
 c = controls(0)
 if c.up then
 scale.x += 0.1
 scale.y += 0.1
 scale.z += 0.1
 endIf
 if c.down then
 scale.x -= 0.1
 scale.y -= 0.1
 scale.z -= 0.1
 endIf
 scale.x = clamp(scale.x, 0.5, 5)
 scale.y = clamp(scale.y, 0.5, 5)
 scale.z = clamp(scale.z, 0.5, 5)
 setObjectScale(colin, scale)
 animframe = animframe + 1 / 60

350

 if animframe >= animlength then
 animframe = 0
 endIf
 updateAnimation(colin, animID, animframe)
 drawObjects()
 printAt(0, 1, "Use the up and down arrows to increase or decrease the scale")
 update()
repeat

Associated Commands

drawObjects(), loadModel(), objectPointAt(), placeObject(), removeObject(), rotateObject(),
setObjectMaterial(), setObjectPos()

351

setTerrainPoint()

Purpose

Set a point on a 3D terrain

Description

Set the height and colour of a point on a terrain grid

Syntax
setTerrainPoint(terrain, xpos, ypos, height, colour)

Arguments

terrain handle of the terrain from createterrain

xpos horizontal position in the grid

ypos vertical position in the grid

height height of the point

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

Example
gsize = 64
landscape = createTerrain(gsize, 1)
height = 0
colour = white

for x = 0 to gsize loop
 for y = 0 to gsize loop
 d = distance ({ x, y }, { gsize / 2, gsize / 2 })
 if d > 24 then // sea level
 height = 0
 colour = blue
 else
 if d > 18 then // beach
 height = 1
 colour = yellow
 else // hills
 height = rnd(2) + 1
 colour = green
 endIf
 endIf
 setTerrainPoint(landscape, x, y, height, colour)
 repeat

352

repeat

setCamera({ gsize / 2, 50, gsize / 2 }, { gsize /2.0, 0, gsize / 2.00001 })
setambientlight({ 0.5, 0.5, 0.5 })
island = placeObject(landscape, { gsize / 2, 0, gsize / 2}, { 1, 1, 1 })
loop
 printAt(0, 0, "rotate using joysticks")
 c = controls(0)
 rotateObject(island, { 1, 0, 0 }, c.ly)
 rotateObject(island, { 0, 0, 1 }, c.lx)
 rotateObject(island, { 0, 1, 0 }, c.rx)
 drawObjects()
 update()
repeat

Associated Commands

createTerrain(), updateTerrain()

353

spotLight()

Purpose

Create a spotlight light source in 3D space

Description

Creates a spotlight source in the specified position of the specified colour, brightness and with the
specified spread angle

Syntax
handle = spotLight(position, direction, colour, brightness, spread)

Arguments

handle handle of the light source

position A position vector in 3 dimensional space { x, y, z } where the light source is located

direction A vector to describe the direction in which the light is pointing

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

brightness A value to indicate the brightness of the light source

spread angle (in degrees) of the spread of the light

Example
setCamera({ 0, 6, 10 }, { 0, 0, 0 })
spread = 50
light = spotLight({ 0, 4, 0 }, { 0, -1, 0 }, white, 100, spread)

obj = [
 placeObject(cube, { 0, 0, 0 }, { 4, 0.1, 4 }),
 placeObject(cube, { 0, 1.1, 0 }, { 1, 1, 1 })
]

setObjectMaterial(obj[0], white, 0, 1)
setObjectMaterial(obj[1], cyan, 0, 1)

loop
 c = controls(0)
 spread += c.ly
 spread = clamp(spread, 0, 100)
 setLightSpread(light, spread)
 rotateObject(obj[1], { 0, 1, 0 }, 1.0)
 drawObjects()

354

 printAt(0, 0, "Use Joy-Con left control stick adjust spread: " + spread)
 update()
repeat

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setAmbientLight(), setLightBrightness(),
setLightColour(), setLightDir(), setLightPos(), setLightSpread(), worldLight(),
worldShadowLight()

355

updateAnimation()

Purpose

Update a 3D animation

Description

Some 3D models contain animation sequences. This updates the animation with the specified
frame

Syntax
updateAnimation(object, animation, frame)

Arguments

object handle of the animated 3D object

animation index of the animation

frame index of the animation frame

Example
cb = loadModel("Kat/Colin")
pointLight({ 0.5, 1.3, 2 }, white, 4)
setAmbientLight({ 0.5, 0.5, 0.5 })
colin = placeObject(cb, { 0, 0, 0 }, { 1, 1, 1 })
setCamera({ 0, 10, 10 }, { 0, 5, 0 })
animID = 6
animlength = animationLength(colin, animID)
animframe = 0
loop
 clear()
 animframe = animframe + 1 / 60
 if animframe >= animlength then
 animframe = 0
 endIf
 updateAnimation(colin, animID, animframe)
 drawObjects()
 printAt(0, 0, animframe)
 update()
repeat

356

Associated Commands

animationLength(), numAnimations()

357

updateTerrain()

Purpose

Update a 3D terrain

Description

Update a 3D terrain from arrays of heights and colours

Syntax
updateTerrain(terrain, heights, colours)

Arguments

terrain identifer of the terrain from createterrain

heights array containing height of each point on the grid

colour array containing colour of each point on the grid

Example
gsize = 8
landscape = createTerrain(gsize, 1)
colours = []
heights = []
palette = []
palette[0] = black
palette[1] = white

j = 0
for i = 0 to 64 loop
 j = j + 1
 if i % 8 == 0 then
 j = j + 1
 endIf
 colours[i] = palette[j % 2]
 heights[i] = float(j % 2)
repeat

updateTerrain(landscape, heights, colours)
setCamera({ gsize / 2, 10, gsize / 2 }, { gsize / 2.0, 0, gsize / 2.00001 })
setAmbientLight({ 0.5, 0.5, 0.5 })
island = placeObject(landscape, { gsize / 2, 0, gsize / 2 }, { 1, 1, 1 })

loop
 c = controls(0) // rotate using joysticks
 rotateObject(island, { 1, 0, 0 }, c.ly)

358

 rotateObject(island, { 0, 0, 1 }, c.lx)
 rotateObject(island, { 0, 1, 0 }, c.rx)
 drawObjects()
 update()
repeat

Associated Commands

createTerrain(), setTerrainPoint()

359

worldLight()

Purpose

Create a world light source

Description

Creates a world light source in the specified direction and with the specified colour and brightness

Syntax
handle = worldLight(direction, colour, brightness)

Arguments

direction direction the light source is pointing { x, y, z }

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

brightness brightness of the light source (0 - 100)

handle handle of the light source

Example
obj1 = placeObject(cube, { -3, 0, 0 }, { 1, 1, 1 })
obj2 = placeObject(cube, { 3, 0, 0 }, { 1, 1, 1 })
setObjectMaterial(obj1, white, 0, 0.05) // white, smooth, shiny
setObjectMaterial(obj2, white, 0, 0.05) // white, smooth, shiny
floor = placeObject(cube, { 0, -2, 0 }, { 10, 0.05, 10 })
setObjectMaterial(floor, grey, 0, 1) // grey, smooth, not shiny
setCamera({ 1, 0.5, 5 }, { 0, 0, 0 }) // back a bit and off centre, facing world centre
worldLight({-1, -0.5, -0.5 }, white, 1)

loop
 rotateObject(obj1, { 1, 1, 1 }, 1) // in all directions by 1 degree
 rotateObject(obj2, { 1, 1, 1 }, -1) // in all directions by -1 degree
 drawObjects()
 update()
repeat

360

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setAmbientLight(), setLightBrightness(),
setLightColour(), setLightDir(), setLightPos(), setLightSpread(), spotLight(), worldShadowLight()

361

worldShadowLight()

Purpose

Create a world light source that casts a shadow

Description

Creates a world light source in the specified direction and with the specified colour and brightness

Syntax
handle = worldShadowLight(centre, direction, colour, brightness, range, resolution)

Arguments

centre centre of the range for shadows

direction direction the light source is pointing { x, y, z }

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

brightness brightness of the light source (0 - 100)

range range of shadows

resolution resolution of shadows (higher is smoother)

handle handle of the light source

Example
obj1 = placeObject(cube, { -3, 0, 0 }, { 1, 1, 1 })
obj2 = placeObject(cube, { 3, 0, 0 }, { 1, 1, 1 })
setObjectMaterial(obj1, white, 0, 0.05) // white, smooth, shiny
setobjectmaterial(obj2, white, 0, 0.05) // white, smooth, shiny
floor = placeObject(cube, { 0, -2, 0 }, { 10, 0.05, 10 })
setObjectMaterial(floor, grey, 0, 1) // grey, smooth, not shiny
setCamera({ 1, 0.5, 5 }, { 0, 0, 0 }) // back a bit and off centre, facing world centre
worldShadowLight({ 0, 0, 0 }, { -1, -0.5, -0.5 }, white, 1, 10, 512)

loop
 rotateObject(obj1, { 1, 1, 1 }, 1) // in all directions by 1 degree
 rotateObject(obj2, { 1, 1, 1 }, -1) // in all directions by -1 degree
 drawObjects()
 update()
repeat

362

Associated Commands

pointLight(), pointShadowLight(), removeLight(), setAmbientLight(), setLightBrightness(),
setLightColour(), setLightDir(), setLightPos(), setLightSpread(), spotLight(), worldLight()

363

Arithmetic

364

abs()

Purpose

Returns absolute value of the given argument.

Description

Always returns the positive value of a given number. For instance: abs(-1) = 1

Syntax
absolute = abs(number)

Arguments

number A positive or negative number

absolute The positive value of number (the number without the - sign)

Example
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 10, 10 })
maxrs = 240 // max rotation speed
accr = 1 // accelaration
loop
 clear()
 rs = getSpriteRotationSpeed(ship)
 if (abs(rs) > maxrs) then
 accr = -accr
 endIf
 setSpriteRotationSpeed(ship, rs + accr)
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

365

acos()

Purpose

Returns the arc cosine of the supplied argument.

Description

This is the inverse of the COS function, for returning the angle from a given cosine.

Syntax
angle = acos(cosine)

Arguments

cosine The ratio of the side adjacent to an acute angle in a right-angled triangle to the hypotenuse.

angle The acute angle in a right-angled triangle for the given cosine

Example
cosine = 0.5
angle = acos(cosine)
print ("Angle = ", angle)
update()
sleep(3)

Associated Commands

asin(), atan(), atan2(), pi(), radians(), sin(), sinCos(), tan()

366

asin()

Purpose

Returns the arc sine of the supplied argument.

Description

This is the inverse of the SIN function, for returning the angle from a given sine.

Syntax
angle = asin(sine)

Arguments

sine The ratio of the side opposite to an acute angle in a right-angled triangle to the hypotenuse.

angle The acute angle in a right-angled triangle for the given sine

Example
sine = 0.5
angle = asin(sine)
print("Angle = ", angle)
update()
sleep(3)

Associated Commands

acos(), atan(), atan2(), pi(), radians(), sin(), sinCos(), tan()

367

atan()

Purpose

Returns the arc tangent of the supplied argument.

Description

This is the inverse of the TAN function, for returning the angle from a given tangent.

Syntax
angle = atan(tangent)

Arguments

tangent The ratio of the side opposite to an acute angle in a right-angled triangle to the one
adjacent.

angle The acute angle in a right-angled triangle for the given tangent

Example
tangent = 0.5
angle = atan(tangent)
print("Angle = ", angle)
update()
sleep(3)

Associated Commands

acos(), asin(), atan2(), pi(), radians(), sin(), sinCos(), tan()

368

atan2()

Purpose

Returns the arctangent between the point specified and the origin.

Description

Unlike ATAN, atan2 requires two values. It returns the angle between the origin and the point
specified.

Syntax
angle = atan2(x, y)

Arguments

x The number of horizontal pixels from the origin (0,0)

y The number of vertical pixels from the origin (0,0)

angle The angle between the origin and the specified point

Example
radians(true)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gWidth() / 2, gHeight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 4, 4 })
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use left control stick to control sprite")
 setSpriteSpeed(ship, { 480 * c.lx, -480 * c.ly })
 curpos = getSpriteLocation(ship)
 if curpos != lastpos then
 setSpriteRotation(ship, -pi / 2 + atan2(curpos.y - lastpos.y, curpos.x - lastpos.x))
 lastpos = curpos
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

acos(), asin(), atan(), pi(), radians(), sin(), sinCos(), tan()

369

bezier()

Purpose

Used to draw quadratic bezier curves

Description

A Bezier curve (pronounced [bezje] in French) is a parametric curve used in computer graphics
and related fields.

Syntax
point = bezier(point1, point2, point3, factor)

point = bezier(point1, point2, point3, point4, factor)

Arguments

point1 The first point

point2 The second point

point3 The third point

point4 Optional fourth point

factor interpolation factor

point A point on the bezier curve

Example
a = 0
c = { gWidth() /2 , gHeight() / 2 }
p1 = { 0, gHeight() / 2 }
p3 = { gWidth(), gHeight() / 2 }
loop
 clear()
 p2 = c + sincos(a) * (gHeight() /2)
 op = p1
 for i = 0 to 16 loop
 p = bezier(p1, p2, p3, i / 15)
 line(op, p, white)
 op = p
 repeat
 a + = 0.01
 update()
repeat

370

Associated Commands

lerp(), smoothStep()

371

bitCount()

Purpose

Returns the number of bits set (1) in a binary number

Description

Counts how many bits in a binary number are set to 1

Syntax
result = bitCount(number)

Arguments

number 32 bit signed binary number

result Number of bits set to 1 in number

Example
number = 0
for i = 0 to 16 loop
 number = bitSet(number, i, 1)
 count = bitCount(number)
 printAt(0, i , number, " ", count)
 update()
repeat
sleep(3)

Associated Commands

bitGet(), bitSet(), bitFieldExtract(), bitFieldInsert(), leadingZeroes(), trailingZeroes()

372

ceil()

Purpose

Returns the ceiling of a real number

Description

Returns the least integer greater than or equal to the real number specified e.g. ceil(2.4) = 3

Syntax
result = ceil(number)

Arguments

number A real number

result The ceiling of number

Example
roll = 0
clear()
image = loadImage("Colin Brown/Dice", false)
size = tileSize(image, 0)
for i = 1 to 10 loop
 clear()
 roll = random(6) + 1
 x = size.x - (size.x * (roll % 2))
 y = size.y * (ceil(roll / 2) - 1)
 drawImage(image, { x, y, size.x, size.y }, { 0, 0, size.x, size.y })
 update()
 sleep(0.3)
repeat
printAt(0, 15, "You rolled a ", roll)
update()
sleep(3)

Associated Commands

clamp(), floor(), max(), min()

373

clamp()

Purpose

Restrict a value to a specified range

Description

If the specified number is below the minimum value returns the minimum value. If it is above the
maximum value returns the maximum value. If it is between mimum and maximum then the
number is returned.

Syntax
result = clamp(number, minimum, maximum)

Arguments

number Number to restrict

minimum Minimum value for number

maximum Maximum value for number

result Restricted value

Example
setCamera({0, 10, 10 }, { 0, 0, 0 })
bright = 50
light = worldLight({ -1, -1, -1 }, white, bright)
ballmodel = loadModel("Kat/Discoball")
ball = placeObject(ballmodel, { 0, -0, 0 }, { 10, 10, 10 })
loop
 c = controls(0)
 if c.up then
 bright = bright + 1
 endIf
 if c.down then
 bright = bright - 1
 endIf
 bright = clamp(bright, 0, 100)
 setLightBrightness(light, bright)
 rotateObject(ball, { 0, 1, 0 }, 1.0)
 drawObjects()
 printAt(0, 0, "Use up and down arrows to adjust brightness: ", bright)
 update()
repeat

Associated Commands

374

ceil(), floor(), max(), min()

375

cos()

Purpose

Returns the cosine of the supplied argument.

Description

This is the cosine function which returns the ratio of the side adjacent to an acute angle in a right-
angled triangle to the hypotenuse (longest side)

Syntax
cosine = cos(angle)

Arguments

angle The acute angle adjacent to the side of a right-angled triangle.

cosine The ratio of the adjacent side to the hypotenuse.

Example
clear()
centre = { gWidth() / 2, gHeight() / 2 }
for angle = 0 to 360 loop
 // Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, 1.0 }
 point = { 600 * cos(angle) + centre.x, 300 * sin(angle) + centre.y }
 line(centre, point, col)
repeat
update()
// Wait 3 seconds
sleep(3)

376

Associated Commands

acos(), asin(), atan(), atan2(), pi(), radians(), sin(), sinCos(), tan()

377

cross()

Purpose

Find the cross product of two vectors

Description

Calculate the cross product of two vectors which is the vector that is at right angles to them both

Syntax
vector3 = cross(vector1, vector2)

Arguments

vector1 The first vector (x,y,z)

vector2 The second vector (x,y,z)

vector3 The resulting vector (x,y,z)

Example
vector1 = { 2, 3, 4 }
vector2 = { 5, 6, 7 }
vector3 = cross(vector1, vector2)
print("(", vector3.x, ",", vector3.y, ",", vector3.z, ")")
update()
sleep(3)

Associated Commands

dot(), length(), normalize(), reflect(), refract()

378

distance()

Purpose

Find the distance between 2 points

Description

Returns the distance between 2 points in a 2 or 3 dimensions

Syntax
result = distance(point1, point2)

Arguments

point1 Coordinates of first point { x, y, z }

point2 Coordinates of second point { x, y, z }

result Distance between point1 and point2

Example
p1 = { 80, 20, 60 }
p2 = { 30, 50, 70 }
print(distance(p1, p2))
update()
sleep(3)

Associated Commands

379

dot()

Purpose

Find the dot product of two vectors

Description

Calculate the dot product (the scalar value from multiplication) of two vectors

Syntax
scalar = dot(vector1, vector2)

Arguments

vector1 The first vector (x,y,z)

vector2 The second vector (x,y,z)

scalar The resulting scalar value

Example
vector1 = { 2, 3, 4 }
vector2 = { 5, 6, 7 }
scalar = dot(vector1, vector2)
print(scalar)
update()
sleep(3)

Associated Commands

cross(), length(), normalize(), reflect(), refract()

380

float()

Purpose

Convert value to floating point

Description

Convert a string or integer value to a floating point number

Syntax
result = float(value)

Arguments

value string or int value to be converted

result floating point result

Example
print(float("3.6")) // prints 3.600000
print(float("3.1415926")) // prints 3.141593
print(float("99")) // prints 99.000000
print(float("Hello")) // prints 0.000000
update()
sleep(3)

Associated Commands

int(), fract(), round(), str(), trunc()

381

floor()

Purpose

Returns the floor of a real number

Description

Returns the greatest integer less than or equal to the real number specified e.g. floor(2.4) = 2

Syntax
result = floor(number)

Arguments

number A real number

result The floor of number

Example
x = 2.4
// Prints 2
print(floor(x))
update()
sleep(3)

Associated Commands

ceil(), clamp(), max(), min()

382

fract()

Purpose

Get the fractional part of floating point number

Description

Returns the fractional part of a floating point number (the part after the decimal point)

Syntax
result = fract(value)

Arguments

value floating point value find the fractional part of

result fractional part of value

Example
print(fract(3.1415926)) // prints 0.141593
print(fract(3)) // prints 0.000000
update()
sleep(3)

Associated Commands

int(), float(), round(), str(), trunc()

383

int()

Purpose

Convert value to an integer

Description

Convert a string or float value to an integer

Syntax
result = int(value)

Arguments

value string or float value to be converted

result integer result

Example
print(int("3.6")) // prints 3
print(int("3.1415926")) // prints 3
print(int("99")) // prints 99
print(int("Hello")) // prints 0
update()
sleep(3)

Associated Commands

float(), fract(), round(), str(), trunc()

384

length()

Purpose

Find the length of a vector

Description

Calulates the length of a vector in 1,2,3 or 4 dimensions

Syntax
result = length(vector)

Arguments

result length of the specified vector

vector vector to find the length of

Example
print(length({ 3 })) // prints 3
print(length({ 3, 4 })) // prints 5
print(length({ 3, 4, 5 })) // prints 7.071068
print(length({ 3, 4, 5, 6 })) // prints 9.273619
update()
sleep(3)

Associated Commands

cross(), dot(), normalize(), reflect(), refract()

385

lerp()

Purpose

Linear interpolation

Description

Returns an interpolation between two inputs (v0, v1) for a parameter (t) in the closed unit
interval [0, 1]. This lerp function is commonly used for alpha blending (the parameter “t” is the
“alpha value”), and the formula may be extended to blend multiple components of a vector (such
as spatial x, y, z axes or r, g, b colour components) in parallel.

Syntax
result = lerp(v0, v1, t)

Arguments

result linear interpolation

v0 first value

v1 second value

t t parameter from 0 to 1

Example
image = loadImage("Untied Games/Knight", false)
sprite = createSprite()
setSpriteImage(sprite, image)
setSpriteAnimation(sprite, 8, 11, 10)
setSpriteScale(sprite, 5, 5)
sprite.y = 100
start_x = 0
end_x = gWidth()
t = 0
duration = 5
reverse = false
loop
 clear()
 t += deltaTime() // duration
 if t >= 1 then
 t = 0
 //reverse direction by swapping start and end
 temp = start_x
 start_x = end_x
 end_x = temp
 //reverse the character graphics direction

386

 sprite.xscale *= -1
 endIf
 sprite.x = lerp(start_x, end_x, t)
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

bezier(), smoothStep()

387

max()

Purpose

Returns the maximum of two numbers

Description

Find which is the highest of two numbers

Syntax
result = max(number1, number2)

Arguments

number1 first number

number2 second number

result whichever is the highest of number1 or number2

Example
a = 2
b = -2
// Prints 2
print(max(a, b))
update()
sleep(3)

Associated Commands

ceil(), clamp(), floor(), min()

388

min()

Purpose

Returns the minimum of two numbers

Description

Find which is the lowest of two numbers

Syntax
result = min(number1, number2)

Arguments

number1 first number

number2 second number

result whichever is the lowest of number1 or number2

Example
a = 2
b = -2
// Prints -2
print(min(a, b))
update()
sleep(3)

Associated Commands

ceil(), clamp(), floor(), max()

389

normalize()

Purpose

Normalize a vector

Description

Gets the normalized vector of a specified vector which is a vector in the same direction but with
length 1 (also called the unit vector)

Syntax
result = normalize(vector)

Arguments

result length of the specified vector

vector normalized vector

Example
result = normalize({ 3, 4, 5 })
print("{ ", result.x, ",", result.y, ",", result.z, " }")
print(length(result)) // prints 1.000000
update()
sleep(3)

Associated Commands

cross(), dot(), length(), reflect(), refract()

390

pi()

Purpose

Returns the value of pi

Description

Returns an approximation of the value of the constant pi which is the ratio of a circle’s
circumference to its diameter (approximately 3.14159265) which is widely used in mathematics,
specifically trigonometry and geometry.

Syntax
value = pi

Arguments

value An approximation of the value of pi

Example
clear()
radians(true)
centre = { gWidth() / 2, gHeight() / 2 }
for angle = 0 to 2 * pi step 0.005 loop
 col = { random(101) / 100, random(101) / 100, random(101) / 100, 1.0 }
 result = sincos(angle)
 point = { 600 * result.y + centre.x, 300 * result.x + centre.y }
 line(centre, point, col)
 repeat
update()
sleep(3)

391

Associated Commands

acos(), asin(), atan(), atan2(), radians(), sin(), sinCos(), tan()

392

pow()

Purpose

Raise a number to the power of another

Description

Returns a number to the specified power

Syntax
result = pow(number, power)

Arguments

result number raised to the specified power

number number to be raised to the specified power

power power to raise number by

Example
for i = 0 to 16 loop
 j = pow(2, i)
 printAt(0, i, int(j), " ", trailingZeroes(j))
 update()
repeat
sleep(3)

Associated Commands

rsqrt(), sqrt()

393

radians()

Purpose

Change the default units for angles

Description

By default all functions that get or return angles use degrees as the unit (360 degrees in a circle).
This function allows you to switch to using radians (2 * PI radians in a circle) and back to degrees

Syntax
radians(enable)

Arguments

enable If 1 (true) then the default unit for angles is swictched to radians otherwise it is degrees

Example
// The 2 for loops are equivalent using different units for angles
clear()
centre = { gWidth() / 2, gHeight() / 2 }
radians(true)
for angle = 0 to 2 * pi step 0.017 loop
 col = { random(101) / 100, random(101) / 100, random(101) / 100, 1.0 }
 point = { 600 * cos(angle) + centre.x, 300 * sin(angle) + centre.y }
 line(centre, point, col)
 update()
repeat

clear()
sleep(3)
radians(0)
for angle = 0 to 360 step 1 loop
 col = { random(101) / 100, random(101) / 100, random(101) / 100, 1.0 }
 point = { 600 * cos(angle) + centre.x, 300 * sin(angle) + centre.y }
 line(centre, point, col)
 update()
repeat
sleep(3)

394

Associated Commands

acos(), asin(), atan(), atan2(), pi(), sin(), sinCos(), tan()

395

random()

Purpose

Returns a random number in the given range.

Description

This function returns a random number from 0 up to, but not including range.

Syntax
number = random(range)

Arguments

range The number of different random numbers that can be returned

number A random number between 0 and range -1

Example
roll = 0
clear()
image = loadImage("Colin Brown/Dice", false)
size = tileSize(image, 0)
for i = 1 to 10 loop
 clear()
 roll = random(6) + 1
 x = size.x - (size.x * (roll % 2))
 y = size.y * (ceil(roll / 2) - 1)
 drawImage(image, { x, y, size.x, size.y }, { 0, 0, size.x, size.y })
 update()
 sleep(0.3)
repeat
printAt(0, 15, "You rolled a ", roll)
update()
sleep(3)

396

Associated Commands

397

reflect()

Purpose

Find the reflection of a vector

Description

Find the reflection of a vector when it hits a surface

Syntax
result = reflect(incident, normal)

Arguments

result The resulting reflection vector { x, y, z, w }

incident incident vector { x, y, z, w }

normal normal vector orthoganal to the surface { x, y, z, w }

Example
radians(true)
image = loadImage("Untied Games/Enemy small top C", false)
ship = createSprite()
setSpriteImage(ship, image)
lastpos = { gwidth() / 2, gheight() / 2 }
setSpriteLocation(ship, lastpos)
setSpriteScale(ship, { 3, 3 })
size = getSpriteSize(ship)
speed = { 400, 300 }

loop
 clear()
 c = controls(0)
 curpos = getSpriteLocation(ship)
 refx = 0
 refy = 0
 if curpos.x < size.x / 2 then
 refx = 1
 endIf
 if curpos.y < size.y / 2 then
 refy = 1
 endIf
 if curpos.x > gwidth() - size.x / 2 then
 refx = -1
 endIf
 if curpos.y > gheight() - size.y / 2 then
 refy = -1
 endIf
 speed = reflect(speed, { refx, refy })
 setSpriteSpeed(ship, speed)
 if curpos != lastpos then
 setSpriteRotation(ship, -pi / 2 + atan2(curpos.y - lastpos.y, curpos.x - lastpos.x))

398

 lastpos = curpos
 endIf
 updateSprites()
 drawSprites()
 update()
repeat

Associated Commands

cross(), dot(), length(), normalize(), refract()

399

refract()

Purpose

Find the refraction of a vector

Description

Find the refraction of a vector when it passes through a surface

Syntax
result = refract(incident, normal, ior)

Arguments

result resulting refraction vector { x, y, z, w }

incident incident vector { x, y, z, w }

normal normal vector orthoganal to the surface { x, y, z, w }

ior index of refraction of the material from which the surface is made

Example
centre = { gWidth() / 2, gHeight() / 2 }
dir = { 1, 1 }
ior = 0.5

loop
 clear()
 c = controls(0)
 ior += c.lx * 0.1
 refractedDir = refract(dir, { 0, -1 }, ior)
 box(0, centre.y, gWidth(), centre.x, { 0, 0, 1, 0.2 }, false)
 line({ centre.x - 250 * refractedDir.x, centre.y - 250 * dir.y }, centre, white)
 line(centre, { centre.x + 250 * refractedDir.x, centre.y + 250 * refractedDir.y }, white)
 printAt(0, 0, "Move left Joy-Con Control stick left or right to adjust index of refraction")
 printAt(0, 1, "Index of refraction: " + ior)
 update()
repeat

Associated Commands

cross(), dot(), length(), normalize(), reflect()

400

rnd()

Purpose

Returns a random number in the given range.

Description

This function returns a random number from 0 up to, but not including range.

Syntax
number = rnd(range)

Arguments

range The number of different random numbers that can be returned

number A random number between 0 and range -1

Example
roll = 0
clear()
image = loadImage("Colin Brown/Dice", false)
size = tileSize(image, 0)
for i = 1 to 10 loop
 clear()
 roll = rnd(6) + 1
 x = size.x - (size.x * (roll % 2))
 y = size.y * (ceil(roll / 2) - 1)
 drawImage(image, { x, y, size.x, size.y }, { 0, 0, size.x, size.y })
 update()
 sleep(0.3)
repeat
printAt(0, 15, "You rolled a ", roll)
update()
sleep(3)

401

Associated Commands

402

round()

Purpose

Round a floating point number

Description

Round a floating point number to the nearest integer

Syntax
result = round(value)

Arguments

value float value to be rounded

result nearest integer result (0.5 rounds up to 1)

Example
print(round(3.1415926)) // prints 3.000000
print(round(3.5)) // prints 4.000000
update()
sleep(3)

Associated Commands

int(), float(), fract(), str(), trunc()

403

rsqrt()

Purpose

Find the fast inverse square root of the specfied number

Description

Returns the reciprocal (or multiplicative inverse) of the square root of a number. This operation is
used in digital signal processing to normalize a vector (scale it to length 1.) e.g. in computer
graphics inverse square roots are used to compute angles of incidence and reflection for lighting
and shading.

Syntax
result = rsqrt(number)

Arguments

number The number to find the reciprocal square root of

result The reciprocal square root (1/square root) of the number

Example
num = 10
print(rsqrt(num))
update()
sleep(3)

Associated Commands

pow(), sqrt()

404

sin()

Purpose

Returns the sine of the supplied argument.

Description

This is the sine function which returns the ratio of the side opposite to an acute angle in a right-
angled triangle to the hypotenuse (longest side)

Syntax
sine = sin(angle)

Arguments

angle The acute angle opposite to the side of a right-angled triangle.

sine The ratio of the side opposite to an acute angle in a right-angled triangle to the hypotenuse.

Example
clear()
centre = { gWidth() / 2, gHeight() / 2 }
for angle = 0 to 360 loop
 // Pick random colour
 col = { random(101) / 100, random(101) / 100, random(101) / 100, 1.0 }
 point = { 600 * cos(angle) + centre.x, 300 * sin(angle) + centre.y }
 line(centre, point, col)
repeat

for i = 0 to 100 loop
 update()
repeat

405

Associated Commands

acos(), asin(), atan(), atan2(), pi(), radians(), sinCos(), tan()

406

sinCos()

Purpose

Returns the sine and cosine of the supplied angle.

Description

This is the sine (SIN) and cosine (COS) functions combined. If you require both values it is more
convenient than calling the two separately.

Syntax
result = sinCos(angle)

Arguments

angle An acute angle in a right-angled triangle.

result A vector containing the sine (result.x) and cosine (result.y) values for the specified angle.

Example
clear()
centre = { gWidth() / 2, gHeight() / 2 }
for angle = 0 to 360 loop
 col = { random(101) / 100, random(101) / 100, random(101) / 100, 1.0 }
 result = sinCos(angle)
 point = { 600 * result.y + centre.x, 300 * result.x + centre.y }
 line(centre, point, col)
repeat

for i = 1 to 100 loop
 update()
repeat

407

Associated Commands

acos(), asin(), atan(), atan2(), pi(), radians(), sin(), sinCos(), tan()

408

smoothStep()

Purpose

Hermite interpolation

Description

Perform Hermite interpolation between two values

Syntax
result = smoothStep(value0, value1, factor)

Arguments

result Hermite interpolation

value0 left edge value

value1 right edge value

factor interpolation factor

Example
col = { 0, 1, 1, 1 }
// draw lines in a gradient fading from black to cyan
for i = 0 to gWidth() loop
 col.a = smoothStep(0, 1, i / gWidth())
 line({ i, 0 }, { i, gHeight() }, col)
repeat
update()
sleep(3)

Associated Commands

bezier(), lerp()

409

sqrt()

Purpose

Find the square root of the specfied number

Description

The mathematical square root function which is the number which when multiplied by itself will
give you the specfied number. If you try to find the square root of a negative number it will return
nan (not a number)

Syntax
result = sqrt(number)

Arguments

number number to find the square root of

result square root of the number

Example
// Pythagoras: for a right angled triangle with side lengths a,b and c (where c is the longest side) a*a + b*b = c*c
a = 3
b = 4
c = sqrt(a * a + b * b)
print("c = ", c)
update()
sleep(3)

Associated Commands

pow(), rsqrt()

410

tan()

Purpose

Returns the tangent of the supplied argument.

Description

This is the ratio of the length of the side opposite to the acute angle of a right angle triangle to the
length of the side adjacent to it.

Syntax
tangent = tan(angle)

Arguments

angle The acute angle in a right-angled triangle for the given tangent

tangent The ratio of the side opposite to an acute angle in a right-angled triangle to the one
adjacent.

Example
angle = 45
tangent = tan(angle)
print("Tangent = ", tangent)
update()
sleep(3)

Associated Commands

acos(), asin(), atan(), atan2(), pi(), radians(), sin(), sinCos()

411

trunc()

Purpose

Truncates a floating point number

Description

Returns the integer part of a floating point number

Syntax
result = trunc(value)

Arguments

value floating point value to be truncated

result integer part of a value

Example
printAt(0, 0, trunc(3.1415926)) // prints 3.000000
printAt(0, 1, trunc(3.9)) // prints 3.000000

for i = 1 to 100 loop
 update()
repeat

Associated Commands

int(), float(), fract(), round(), str()

412

Binary

413

bitFieldExtract()

Purpose

Extract a number of bits from a binary number

Description

Extract the specified number of bits from a 32 bit signed binary number starting at the specified
bit

Syntax
result = bitFieldExtract(number, start, count)

Arguments

number 32 bit signed binary number

start Start position (first position is 0)

count Number of bits to extract

result The specfied bits

Example
number = 0
for i = 0 to 16 loop
 number = bitSet(number, i, 1)
 lowbyte = bitFieldExtract(number, 0, 8)
 highbyte = bitFieldExtract(number, 8, 8)
 printAt(0, i , number, " ", lowbyte, " ", highbyte)
 update()
repeat
sleep(3)

Associated Commands

bitCount(), bitGet(), bitSet(), bitFieldInsert(), leadingZeroes(), trailingZeroes()

414

bitFieldInsert()

Purpose

Insert a number of bits into a binary number

Description

Insert the specified bits into a 32 bit signed binary number starting at the specified bit

Syntax
 result = bitFieldInsert(number, start, count, value)

Arguments

number 32 bit signed binary number

start Start position (first position is 0)

count Number of bits to insert

value Bits to insert

result resulting number when bits have been inserted

Example
loop
 textSize(50)
 byte1 = 0
 byte2 = 15
 printAt(0, 0, "byte1 = ", bin2str(byte1))
 printAt(0, 1, "byte2 = ", bin2str(byte2))
 result = bitFieldInsert(byte1, 2, 4, byte2)
 printAt(0, 2, "bitFieldInsert(byte1, 2, 4, byte2) = ", bin2str(result))
 update()
repeat

function bin2str(byte)
 result = ""
 for i = 0 to 8 loop
 bit = byte & 1
 if bit then
 result = "1" + result
 else
 result = "0" + result
 endIf
 byte = byte >> 1

415

 repeat
return result

Associated Commands

bitCount(), bitGet(), bitSet(), bitFieldExtract(), bitFieldInsert(), leadingZeroes(), trailingZeroes()

416

bitGet()

Purpose

Get the value of a bit in a binary number

Description

Find out if the value of the specified bit in a binary number is 0 or 1

Syntax
result = bitGet(number, bit)

Arguments

number Number value

bit Bit to get the value of (0-31). Bit 31 is the sign bit.

result Resulting bit value (0 or 1)

Example
number = random(100000) + 1
bit0 = bitGet(number, 0)
if bit0 > 0 then
 print(number, " is an odd number")
else
 print(number, " is an even number")
endIf
update()
sleep(3)

Associated Commands

bitCount(), bitSet(), bitFieldExtract(), bitFieldInsert(), leadingZeroes(), trailingZeroes()

417

bitSet()

Purpose

Set or clear a bit in a binary number

Description

Set (1) or clear (0) the specfied bit in a 32 bit signed binary number

Syntax
result = bitSet(number, bit, value)

Arguments

number Initial number value

bit Bit to set or clear (0-31). Bit 31 is the sign bit.

value 1 (set) or 0 (clear)

result Resulting number value

Example
number = 0
for i = 0 to 16 loop
 number = bitSet(number, i, 1)
 printAt(0, i , number)
 update()
repeat
sleep(3)

Associated Commands

bitCount(), bitGet(), bitFieldExtract(), bitFieldInsert()

418

leadingZeroes()

Purpose

Find the number of leading zeroes in a binary number

Description

Find the number of leading zeroes in a 64 bit binary number

Syntax
result = leadingZeroes(value)

Arguments

value The number to find the number of leading zeroes in

result The number of leading zeroes in value

Example
for i = 0 to 16 loop
 j = pow(2, i)
 printAt(0, i, int(j), " ", leadingZeroes(j))
 update()
repeat
sleep(3)

Associated Commands

bitCount(), bitGet(), bitSet(), bitFieldExtract(), bitFieldInsert(), trailingZeroes()

419

trailingZeroes()

Purpose

Find the number of trailing zeroes in a binary number

Description

Find the number of trailing zeroes in a 64 bit binary number

Syntax
result = trailingZeroes(value)

Arguments

value The number to find the number of trailing zeroes in

result The number of trailing zeroes in value

Example
for i = 0 to 16 loop
 j = pow(2, i)
 printAt(0, i, int(j), " ", trailingZeroes(j))
 update()
repeat
sleep(3)

Associated Commands

bitCount(), bitGet(), bitSet(), bitFieldExtract(), bitFieldInsert(), leadingZeroes()

420

File Handling

421

close()

Purpose

Closes a file

Description

Closes a file previously opened with Open

Syntax
close(handle)

Arguments

handle The handle of the file

Example
string = "Hello World"
printAt(0, 0, "Open file")
handle = open()
printAt(0, 1, "Write to file: ", string)
write(handle, string)
printAt(0, 2, "Close file")
close(handle)
printAt(0, 3, "Open file")
handle = open()
message = read(handle, 11)
printAt(0, 4, "Read from file: ", message)
printAt(0, 5, "Seek to position 6")
seek(handle, 6)
message = read(handle, 5)
printAt(0, 6, "Read from file: ", message)
printAt(0, 7, "Close file")
update()
close(handle)
for i = 1 to 500 loop
 update()
repeat

Associated Commands

close(), open(), read(), seek(), write()

422

open()

Purpose

Open a file for read or write

Description

Opens a text file for reading or writing and returns a handle

Syntax
handle = open()

Arguments

handle The handle of the file

Example
string = "Hello World"
printAt(0, 0, "Open file")
handle = open()
printAt(0, 1, "Write to file: ", string)
write(handle, string)
printAt(0, 2, "Close file")
close(handle)
printAt(0, 3, "Open file")
handle = open()
message = read(handle, 11)
printAt(0, 4, "Read from file: ", message)
printAt(0, 5, "Seek to position 6")
seek(handle, 6)
message = read(handle, 5)
printAt(0, 6, "Read from file: ", message)
printAt(0, 7, "Close file")
update()
close(handle)
for i = 1 to 500 loop
 update()
repeat

Associated Commands

close(), open(), read(), seek(), write()

423

read()

Purpose

Read from a file

Description

Read a string of text from a file from the current position the specified number of characters

Syntax
result = read(handle, count)

Arguments

handle handle of the file

count number of characters to read

result resulting text string

Example
string = "Hello World"
printAt(0, 0, "Open file")
handle = open()
printAt(0, 1, "Write to file: ", string)
write(handle, string)
printAt(0, 2, "Close file")
close(handle)
printAt(0, 3, "Open file")
handle = open()
message = read(handle, 11)
printAt(0, 4, "Read from file: ", message)
printAt(0, 5, "Seek to position 6")
seek(handle, 6)
message = read(handle, 5)
printAt(0, 6, "Read from file: ", message)
printAt(0, 7, "Close file")
update()
close(handle)
for i = 1 to 500 loop
 update()
repeat

Associated Commands

close(), open(), seek(), write()

424

425

seek()

Purpose

Seek to a position in the file

Description

Move the position to the point specified in the file specified by handle

Syntax
Seek(handle, position)

Arguments

handle handle of the file

position position to seek to (0 is the start)

Example
string = "Hello World"
printAt(0, 0, "Open file")
handle = open()
printAt(0, 1, "Write to file: ", string)
write(handle, string)
printAt(0, 2, "Close file")
close(handle)
printAt(0, 3, "Open file")
handle = open()
message = read(handle, 11)
printAt(0, 4, "Read from file: ", message)
printAt(0, 5, "Seek to position 6")
seek(handle, 6)
message = read(handle, 5)
printAt(0, 6, "Read from file: ", message)
printAt(0, 7, "Close file")
update()
close(handle)
for i = 1 to 500 loop
 update()
repeat

Associated Commands

close(), open(), read(), seek(), write()

426

write()

Purpose

Write to a file

Description

Write a string of text to the file specified by handle

Syntax
write(handle, text)

Arguments

handle The handle of the file

text The string of text to be written

Example
string = "Hello World"
printAt(0, 0, "Open file")
handle = open()
printAt(0, 1, "Write to file: ", string)
write(handle, string)
printAt(0, 2, "Close file")
close(handle)
printAt(0, 3, "Open file")
handle = open()
message = read(handle, 11)
printAt(0, 4, "Read from file: ", message)
printAt(0, 5, "Seek to position 6")
seek(handle, 6)
message = read(handle, 5)
printAt(0, 6, "Read from file: ", message)
printAt(0, 7, "Close file")
update()
close(handle)

for i = 1 to 500 loop
 update()
repeat

Associated Commands

close(), open(), read(), seek(), write()

427

Input

428

controls()

Purpose

Read all values from the Joy-Con controllers

Description

Used to establish the state of buttons, position of control sticks and motion sensors. It is advisable
not to read the value of this function directly but to assign to to a variable first.

Syntax
c = controls(index)

Arguments

index Index of the controller (0 to 3)

c.a State of the A button (0 or 1)

c.b State of the B button (0 or 1)

c.x State of the X button (0 or 1)

c.y State of the Y button (0 or 1)

c.up State of the up (^) button (0 or 1)

c.down State of the down (v) button (0 or 1)

c.left State of the left (<) button (0 or 1)

c.right State of the right (>) button (0 or 1)

c.l State of the L button (0 or 1)

c.r State of the R button (0 or 1)

c.zl State of the ZL button (0 or 1)

c.zr State of the ZR button (0 or 1)

c.lx Horizontal position of the left control stick (-1 to 1)

c.ly Vertical position of the left control stick (-1 to 1)

c.rx Horizontal position of the right control stick (-1 to 1)

c.ry Vertical position of the right control stick (-1 to 1)

c.lc State of the left stick press (0 or 1)

429

c.rc State of the right stick press (0 or 1)

c.velocity[0] Velocity of the left controller (or both if connected) \{ x, y, z \}

c.velocity[1] Velocity of the right controller (if disconnected) \{ x, y, z \}

c.orientation[0] Orientation of the left controller (or both if connected) \{ x, y, z \}

c.orientation[1] Orientation of the right controller (if disconnected) \{ x, y, z \}

Example
loop
 clear()
 c = controls(0)
 printAt(0, 0, "zl: ", c.zl)
 printAt(0, 1, "l: ", c.l)
 printAt(0, 3, "lx: ", c.lx)
 printAt(0, 4, "ly: ", c.ly)
 printAt(35, 0, "zr: ", c.zr)
 printAt(35, 1, "r: ", c.r)
 printAt(38, 4, "A: ", c.a)
 printAt(35, 5, "B: ", c.b)
 printAt(35, 3, "X: ", c.x)
 printAt(32, 4, "Y: ", c.y)
 printAt(3, 11, "^: ", c.up)
 printAt(3, 13, "v: ", c.down)
 printAt(0, 12, "<: ", c.left)
 printAt(6, 12, "> ", c.right)
 printAt(33, 11, "rx: ", c.rx)
 printAt(33, 12, "ry: ", c.ry)
 printAt(0, 6, "lc: ", c.lc)
 printAt(33, 14, "rc: ", c.rc)
 printAt(0, 18, "velocity (l): ", c.velocity[0])
 printAt(0, 18, "velocity (r): ", c.velocity[1])
 printAt(0, 18, "orientation (l): ", c.orientation[0])
 printAt(0, 18, "orientation (r): ", c.orientation[1])
 update()
repeat

430

Associated Commands

input(), docked(), getKeyboardBuffer(), showKeyboard(), touch(), hideKeyboard()

431

docked()

Purpose

Find out if the console is in TV mode or handheld mode

Description

Returns true (1) if the console is in TV mode and false (0) if the console is in handheld mode

Syntax
result = docked()

Arguments

** True (1) if the console is in TV mode and false (0) if the console is in handheld mode

Example
loop
 clear()
 dock = docked()
 if dock then
 print("Console is in TV mode")
 else
 print("Console is in handheld mode")
 endIf
 update()
repeat

Associated Commands

input(), controls(), getKeyboardBuffer(), showKeyboard(), touch(), hideKeyboard()

432

getKeyboardBuffer()

Purpose

Get the contents of the keyboard buffer

Description

Returns a string containing key presses since the last call to it

Syntax
result = getKeyboardBuffer()

Arguments

result string containing key presses since the last call

Example
showKeyboard()
loop
 c = getKeyboardBuffer()
 print(c)
 update()
repeat

Associated Commands

input(), controls(), docked(), showKeyboard(), touch(), hideKeyboard()

433

hideKeyboard()

Purpose

Show or the virtual keyboard

Description

Hide the virtual keyboard.

Syntax
hideKeyboard()

Arguments

Example
loop
 c = controls(0)
 printAt(0, 0, "Press A to show keyboard")
 printAt(0, 1, "Press B to hide keyboard")
 if c.a then
 showKeyboard()
 endIf
 if c.b then
 hideKeyboard()
 endIf
 update()
repeat

Associated Commands

input(), controls(), docked(), getKeyboardBuffer(), showKeyboard(), touch()

434

input()

Purpose

Allow text input from the keyboard

Description

Read text input from the keyboard into a variable. The virtual keyboard will be shown
automatically

Syntax
result = input(prompt, multiline)

Arguments

prompt text to display above the input box

multiline allow multiple line input

result variable to store the entered text

Example
name = input("What is your name?", false)
printAt(0, 0, "Hello ", name)
update()
sleep(3)

Associated Commands

controls(), docked(), getKeyboardBuffer(), showKeyboard(), touch(), hideKeyboard()

435

showKeyboard()

Purpose

Show the virtual keyboard

Description

Display the virtual keyboard on the screen.

Syntax
showKeyboard()

Arguments

Example
loop
 c = controls(0)
 printAt(0, 0, "Press A to show keyboard")
 printAt(0, 1, "Press B to hide keyboard")
 if c.a then
 showKeyboard()
 endIf
 if c.b then
 hidekeyboard()
 endIf
 update()
repeat

Associated Commands

input(), controls(), docked(), getKeyboardBuffer(), touch(), hideKeyboard()

436

touch()

Purpose

Read input from the touch screen

Description

Read the cooridinates of up to ten points on the touch screen that have been touched

Syntax
list = touch()

Arguments

list An array of up to 10 points that are currently being touched

Example
list = []
loop
 clear()
 printAt(0, 0, "Touch the screen")
 list = touch()
 count = len(list)
 if count > 0 then
 printAt(0, 1, "count = ", count, " x0 = ", list[0].x, " y0 = ", list[0].y)
 for i = 0 to count loop
 circle(list[i].x, list[i].y, 75, 100, red, 0)
 repeat
 endIf
 update()
repeat

Associated Commands

input(), controls(), docked(), getKeyboardBuffer(), showKeyboard(), touch(), hideKeyboard()

437

Screen Display

438

clear()

Purpose

Clear the screen

Description

Clear the framebuffer and after a call to update the screen. Optionally a colour can be specified to
fill the screen with (default is black)

Syntax
clear()

clear(colour)

Arguments

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

Example
showKeyboard()
clear({ 1, 1, 1, 1 })
update()
sleep(3)
clear(red)
update()
sleep(3)
clear()
update()
sleep(3)

Associated Commands

gHeight(), gWidth(), setDrawTarget(), setMode(), update()

439

Colours

Below is a chart containing the names for each preset colour in FUZE4 Nintendo Switch.

All colour names are labels for RGBA (red, blue, green, alpha) vectors. For example, the name
green is secretly the vector: { 0, 1, 0, 1 }. The first number is the amount of red, next is the amount
of green, then the amount of blue and finally we have the transparency.

To find the RGBA values for any of the colours below, simply use the print() function to display
them! For example, you could write print(fuzePink) to display the RGBA values of the lovely
fuzePink colour.

Here you go, enjoy!

440

441

442

gHeight()

Purpose

Get the height of the screen display

Description

Returns the number of vertical pixels in the screen display

Syntax
height = gHeight()

Arguments

height The height of the screen display in pixels

Example
// Scale an image to fit to the screen
img = loadImage("Colin Brown/DungeonB", false)
size = imageSize(img)
scale = min(gWidth() / size.x, gHeight() / size.y)
drawImage(img, 0, 0, scale)
update()
sleep(3)

Associated Commands

clear(), gWidth(), setDrawTarget(), setMode(), update()

443

gWidth()

Purpose

Get the width of the screen display

Description

Returns the number of horizontal pixels in the screen display

Syntax
width = gWidth()

Arguments

width The width of the screen display in pixels

Example
// Scale an image to fit to the screen
img = loadImage("Colin Brown/DungeonB", false)
size = imageSize(img)
scale = min(gWidth() / size.x, gHeight() / size.y)
drawImage(img, 0, 0, scale)
update()
sleep(3)

Associated Commands

clear(), gHeight(), setDrawTarget(), setMode(), update()

444

setDrawTarget()

Purpose

Sets the target of draw commands

Description

Sets the target of draw commands to be an image or the framebuffer

Syntax
setDrawTarget(target)

Arguments

target handle of an image created with createimage or framebuffer for the screen

Example
w = 200
// Create a tile
img = createImage(w, w, true, image_rgb)
setDrawTarget(img)
box(0, 0, w, w, red, 0)
box(0, w/2, w - 1, w / 2, white, 1)
line({ w / 2 }, { w / 2, w / 2 }, white)
// draw tiles on the screen
setDrawTarget(frameBuffer)
for y = 1 to gHeight() step w loop
 for x = 1 to gWidth() step w loop
 drawImage(img, x, y, 1)
 update()
 sleep(0.2)
 repeat
repeat
sleep(3)

445

Associated Commands

clear(), gHeight(), gWidth(), getDrawTarget(), setMode(), update()

446

setMode()

Purpose

Set the resolution of the screen display

Description

Specify the number of horizontal and vertical pixels in the screen display. The default is 1280 x
720.

Syntax
setMode(width, height)

Arguments

width width of the screen display in pixels (default is 1280)

height height of the screen display in pixels (default is 720)

Example
print(gWidth(), " ", gHeight())
update()
sleep(3)
clear()
setMode(800, 600)
print(gWidth(), " ", gHeight())
update()
sleep(3)

Associated Commands

clear(), gHeight(), gWidth(), setDrawTarget(), setMode(), update()

447

update()

Purpose

Update screen graphics

Description

Render the current frame buffer to the screen. This means that a lot of drawing operations can be
performed without slowing down performance

Syntax
update()

Arguments

Example
loop
 clear()
 col = { random(101) / 100, random(101) / 100, random(101) / 100, 1 }
 x = random(gWidth())
 y = random(gHeight())
 for w = 0 to gWidth() step 5 loop
 line({ x, y },{ w, 0 }, col)
 line({ x, y },{ w, gHeight() }, col)
 repeat
 for h = 0 to gHeight() step 5 loop
 line({ x, y },{ 0, h }, col)
 line({ x, y},{ gWidth(), h}, col)
 repeat
 for i = 1 to 500 loop
 update()
 repeat
repeat

448

Associated Commands

clear(), gHeight(), gWidth(), setDrawTarget(), setMode()

449

Sound and Music

450

audioLength()

Purpose

Find the length of an audio sample

Description

Get the audio length for given handle

Syntax
length = audioLength(handle)

Arguments

handle handle of the audio sample from loadaudio

length length of the audio sample

Example
handle = loadAudio("DavidSilvera/jingle_level_complete_03")
length = audioLength(handle)
volume = 0.5
pan = 0.5
speed = 1
playAudio(0, handle, volume, pan, speed, 0)
start = time()
elapsed = 0
// wait for audio to finish
while elapsed < length loop
 clear()
 now = time()
 elapsed = now - start
 printAt(0, 0, length, " ", elapsed)
 update()
repeat
printAt(0, 1, "Finished")
update()
sleep(3)

Associated Commands

getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(), setClipper(), setFilter(),
setPan(), setVolume(), startChannel(), stopChannel()

451

getChannelStatus()

Purpose

Find the status of an audio channel

Description

Check to see if audio is being played from a given channel

Syntax
status = getChannelStatus(channel)

Arguments

channel audio channel from 0 to 15

status status of the channel (in use or not)

Example
handle = loadAudio("DavidSilvera/jingle_level_complete_03")
volume = 0.5
pan = 0.5
speed = 1
playAudio(0, handle, volume, pan, speed, 0)
start = time()
elapsed = 0
// wait for audio to finish
status = getChannelStatus(0)
while status loop
 clear()
 now = time()
 elapsed = now - start
 printAt(0, 0, elapsed)
 update()
 status = getChannelStatus(0)
repeat
printAt(0, 1, "Finished")
update()
sleep(3)

Associated Commands

audioLength(), loadAudio(), note2Freq(), playAudio(), playNote(), setPan(), setVolume(),
startChannel(), stopChannel()

452

loadAudio()

Purpose

Load an audio sample

Description

Load the specified audio sample and return a handle

Syntax
handle = loadAudio(sample)

Arguments

handle handle of the audio sample

sample path to the audio sample in the media library

Example
handle = loadAudio("DavidSilvera/music_evil_presence")
volume = 0.5
pan = 0.5
speed = 1
playAudio(0, handle, volume, pan, speed, -1)
loop
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), note2Freq(), playAudio(), playNote(), setClipper(), setFilter(),
setPan(), setVolume(), startChannel(), stopChannel()

453

note2Freq()

Purpose

Find the frequency of the specified note

Description

Finds the corresponding frequency for the specfied musical note

Syntax
frequency = note2Freq(note)

Arguments

frequency frequency 10Hz to 20Khz (10 - 20000)

note Int 0 to 128. 0 is C-1, 60 is C4 (Middle C)

Example
freq = []
for i = 0 to 7 loop
 freq[i] = note2Freq(i * 2 + 40)
repeat

for i = 0 to 7 loop
 clear()
 printAt(0, 0, "Frequency: ", freq[i])
 update()
 playNote(0, 0, freq[i], 0.5, 1, 0.5)
 sleep(1)
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), playAudio(), playNote(), setClipper(), setFilter(),
setPan(), setVolume(), startChannel(), stopChannel()

454

playAudio()

Purpose

Play an audio track

Description

Play the specified audio track at the specified volume, pan and speed on the specified channel

Syntax
playAudio(channel, handle, volume, pan, speed, loops)

Arguments

channel audio channel from 0 to 15

handle handle of the audio sample from loadaudio

volume volume from 0 to 1

pan stereo pan from left (0) to right (1)

speed speed mutiplier (1 is normal speed)

loops number of times to repeat (-1 is forever)

Example
handle = loadAudio("DavidSilvera/music_evil_presence")
volume = 0.5
pan = 0.5
speed = 1
playAudio(0, handle, volume, pan, speed, -1)
loop
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playNote(), setClipper(), setFilter(),
setPan(), setVolume(), startChannel(), stopChannel()

455

playNote()

Purpose

Play a musical note

Description

Play a note of the specified frequency, volume and speed on the specified channel

Syntax
playNote(channel, wave, frequency, volume, speed, pan)

Arguments

channel audio channel from 0 to 15

wave wave type (0 = Square, 1 = Saw, 2 = Triangle, 3 = Sine, 4 = Noise)

frequency frequency 10Hz to 20Khz (10 - 20000)

volume volume from 0 to 1

speed speed to reach peak volume (higher is faster)

pan stereo pan from left (0) to right (1)

Example
pan = 0.5
vol = 0.5
for f = 10 to 20000 step 10 loop
 clear()
 printAt(0, 0, "Left joypad: left right to pan, up down to raise lower volume")
 printAt(0, 1, "Frequency: ", f, " Pan: ", pan, " Volume: ", vol)
 c = controls(0)
 if c.left then // left to pan left
 pan = pan - 0.01
 endIf
 if c.right then // right to pan right
 pan = pan + 0.01
 endIf
 if c.up then // up to increase volume
 vol = vol + 0.01
 endIf
 if c.down then // down to decrease volume
 vol = vol - 0.01
 endIf
 pan = max(pan, 0)
 pan = min(pan, 1)
 vol = max(vol, 0)
 vol = min(vol, 1)

456

 playNote(0, 0, f, vol, 0.5, pan)
 sleep(0.05)
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), setClipper(),
setFilter(), setPan(), setVolume(), startChannel(), stopChannel()

457

pulseRumble()

Purpose

Pulse the controller rumble motors

Description

Pulse one of the 4 controller motors at the specified frequency, speed and volume

Syntax
pulseRumble(controller, channel, speed, volume, frequency)

Arguments

controller identifier for the controller (0 is the first)

channel identifier for the motor (0 - top left, 1 - bottom left, 2 - top right, 3 -bottom right)

speed The speed of the pulse - this affects the duration

volume volume (amplitude) of vibration (0 - 1)

frequency frequency of vibration

Example
volume = 1
speed = 1
loop
 clear()
 printAt(0, 0, "Press X to pulse motor 0")
 printAt(0, 1, "Press Y to pulse motor 1")
 printAt(0, 2, "Press A to pulse motor 2")
 printAt(0, 3, "Press B to pulse motor 3")
 c = controls(0)
 motor = -1
 if c.x then
 motor = 0
 endIf
 if c.y then
 motor = 1
 endIf
 if c.a then
 motor = 2
 endIf
 if c.b then
 motor = 3
 endIf

458

 if motor > -1 then
 pulseRumble(0, motor, volume, speed, motor * 100 + 100)
 sleep(0.2)
 endIf
 update()
repeat

Associated Commands

459

setClipper()

Purpose

Set audio clipper

Description

Any sound above the threshold will be attenuated towards it proportional to its level above it. The
strength parameter affects the severity of attenuation. A high value will result in stronger
attenuation towards threshold, a low value results in weaker. A Very high value will simply clip
any audio above the threshold to it

Syntax
setClipper(channel, threshold, strength)

Arguments

channel audio channel from 0 to 15

threshold threshold in decibels

strength strength of attenuation to the threshold

Example
tune = loadAudio("DavidSilvera/music_funky_bar")
threshold = 1
strength = 50
playAudio(0, tune, 1, 0.5, 1, -1)

loop
 clear()
 c = controls(0)
 threshold += c.ly * 0.1
 strength += c.ry * 0.1
 threshold = max(threshold, 0)
 setClipper(0, threshold, strength)
 printAt(0, 0, "Move the left control stick up or down to control threshold")
 printAt(0, 1, "Move the right control stick up or down to control strength")
 printAt(0, 3, "Threshold: " + threshold)
 printat(0, 5, "Attenuation Strength: " + strength)
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(), setFilter(),
setPan(), setVolume(), startChannel(), stopChannel()

460

461

setEnvelope()

Purpose

Set audio envelope

Description

Set an envelope on an audio channel

Syntax
setEnvelope(channel, speed)

Arguments

channel audio channel from 0 to 15

speed speed of the envelope

Example
envelopeSpeed = 0.01
clip = loadAudio("DavidSilvera/animals_sheep_3")
playAudio(0, clip, 4, 0.5, 1, -1)

loop
 clear()
 c = controls(0)
 envelopeSpeed += c.ly * 0.05
 envelopeSpeed = clamp(envelopeSpeed, 0, 0.3)
 printAt(0, 0, "Move Joy-Con left control stick up or down to adjust envelope speed")
 printAt(0, 1, "Envelope Speed: " + envelopeSpeed)
 setEnvelope(0, envelopeSpeed)
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setFilter(), setPan(), setVolume(), startChannel(), stopChannel()

462

setFilter()

Purpose

Set audio filter

Description

Applies a filter to the given audio channel

Syntax
setFilter(channel, type, cutoff)

Arguments

channel audio channel from 0 to 15

type off (0), lowpass (1) - all frequencies above cutoff cut, highpass (2) - all frequencies below cut

cutoff frequency at which the filter is applied

Example
tune = loadAudio("DavidSilvera/music_disco_funky")
type = 0
lowpass = 1
highpass = 2
cutoff = 200
press = false
playAudio(0, tune, 1, 0.5, 1, -1)

loop
 clear()
 c = controls(0)
 if c.a and !press then
 type = lowpass
 endIf
 if c.b and !press then
 type = highpass
 endIf
 if !c.a and !c.b then
 press = false
 endIf
 cutoff += c.ly * 10
 cutoff = max(cutoff, 0)
 setFilter(0, type, cutoff)
 printAt(0, 0, "Move the control stick up and down to adjust filter cutoff frequency")
 printAt(0, 2, "Press the A button to select low-pass filter")
 printAt(0, 3, "Press the B button to select high-pass filter")
 printAt(0, 5, "Filter cutoff frequency: " + cutoff)
 printAt(0, 6, "Filter type: " + type)

463

 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setPan(), setVolume(), startChannel(), stopChannel()

464

setFrequency()

Purpose

Set audio frequency

Description

Set the frequency on an audio channel

Syntax
setFrequency(channel, frequency)

Arguments

channel audio channel from 0 to 15

frequency frequency of the sound

Example
freq = 432
playNote(0, 1, freq, 1, 0, 0.5)

loop
 clear()
 c = controls(0)
 freq += c.ly
 freq = clamp(freq, 0, 20000)
 setFrequency(0, freq)
 printAt(0, 0, "Move the left control stick up and down to control frequency of the note")
 printAt(0, 2, "Frequency: " + freq)
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setFilter(), setPan(), setVolume(), startChannel(), stopChannel()

465

setModulator()

Purpose

Set audio modulator

Description

Set a modulator on an audio channel

Syntax
setModulator(channel, wave, frequency, scale)

Arguments

channel audio channel from 0 to 15

wave wave type (0 = Square, 1 = Saw, 2 = Triangle, 3 = Sine, 4 = Noise)

frequency frequency 10Hz to 20Khz (10 - 20000)

scale modulator scale

Example
waveType = ["Square", "Saw", "Triangle", "Sine", "Noise"]
w = 0
press = false
modFreq = 0
modScale = 0
playNote(0, 3, 432, 1, 0, 0.5)

loop
 clear()
 c = controls(0)
 if c.right and !press then
 w += 1
 press = false
 endIf
 if c.left and !press then
 w -= 1
 press = false
 endIf
 if !c.right and !c.left then
 press = false
 endIf
 modFreq += c.ly
 modScale += c.ry
 w = clamp(w, 0, 4)
 modFreq = max(modFreq, 0)
 modScale = max(modScale, 0)
 setModulator(0, w, modFreq, modScale)
 printAt(0, 0, "Press left or right directional buttons to change modulation wave type")
 printAt(0, 1, "Wave Type: " + waveType[w])
 printAt(0, 3, "Move the left control stick up or down to adjust modulation frequency")

466

 printAt(0, 4, "Modulation Frequency: " + modFreq)
 printAt(0, 6, "Move the right control stick up or down to adjust modulation scale")
 printat(0, 7, "Modulation Scale: " + modScale)
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setFilter(), setPan(), setVolume(), startChannel(), stopChannel()

467

setPan()

Purpose

Change the audio stero position

Description

Set the stereo position for an audio channel

Syntax
setPan(channel, pan)

Arguments

channel audio channel from 0 to 15

pan stereo pan from left (0) to right (1)

Example
handle = loadAudio("DavidSilvera/music_evil_presence")
vol = 0.5
pan = 0.5
speed = 1
playAudio(0, handle, vol, pan, speed, -1)

loop
 clear()
 c = controls(0)
 printat(0, 0, "Use left arrow to pan left")
 if c.left then
 pan -= 0.01
 endIf
 printAt(0, 1, "Use right arrow to pan left")
 if c.right then
 pan += 0.01
 endIf
 pan = max(pan, 0)
 pan = min(pan, 1)
 setPan(0, pan)
 printAt(0, 2, "Pan: ", pan)
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setFilter(), setVolume(), startChannel(), stopChannel()

468

469

setReverb()

Purpose

Set audio reverberation

Description

Set the amount of reverberation on an audio channel

Syntax
setReverb(channel, delay, attenuation)

Arguments

channel audio channel from 0 to 15

delay amount of delay

attenuation amount of attenuation

Example
delay = 20000
attenuation = 0.1
tune = loadAudio("David Silvera/music_funky_bar")
playAudio(0, tune, 1, 0.5, 1, -1)

loop
 clear()
 c = controls(0)
 delay += c.ly * 8
 attenuation += c.ry / 8
 if attenuation > 1 then
 attenuation = 1
 endIf
 if attenuation < -1 then
 attenuation = -1
 endIf
 setReverb(0, delay, attenuation)
 printAt(0, 0, "Push left control stick up or down to control delay")
 printAt(0, 1, "Push right control stick up or down to control attenuation")
 printAt(0, 3, "Delay: " + delay + " milliseconds")
 printAt(0, 4, "Attenuation multiplier: " + attenuation)
 update()
repeat

Associated Commands

470

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setFilter(), setPan(), setVolume(), startChannel(), stopChannel()

471

setRumble()

Purpose

Start or stop the controller rumble motors

Description

Activate one of the 4 controller motors at the specified frequemcy and volume

Syntax
setRumble(controller, channel, volume, frequency)

Arguments

controller identifier for the controller (0 to 3: 0 is the first)

channel identifier for the motor (0 - top left, 1 - bottom left, 2 - top right, 3 -bottom right)

volume volume (amplitude) of vibration (0 - 1)

frequency frequency of vibration

Example
motors = []
frequency = []
for i = 0 to 4 loop
 motors[i] = false
 frequency[i] = i * 100 + 100
repeat
volume = 1

loop
 clear()
 printAt(0, 0, "Press X to toggle motor 0")
 printAt(0, 1, "Press Y to toggle motor 1")
 printAt(0, 2, "Press A to toggle motor 2")
 printAt(0, 3, "Press B to toggle motor 3")
 for i = 0 to 4 loop
 if motors[i] then
 setRumble(0, i, volume, frequency[i]) // turn on motor
 else
 setRumble(0, i, 0, 0) // turn off motor
 endIf
 printAt(30, i, "motor ", i, ": ", motors[i], " frequency: ", frequency[i])
 repeat
 c = controls(0)
 motor = -1
 if c.x then
 motor = 0
 endIf

472

 if c.y then
 motor = 1
 endIf
 if c.a then
 motor = 2
 endIf
 if c.b then
 motor = 3
 endIf
 if motor > -1 then
 motors[motor] = !motors[motor]
 sleep(0.2)
 endIf
 update()
repeat

Associated Commands

pulseRumble()

473

setVolume()

Purpose

Change the audio volume

Description

Set the volume level for the specified audio channel

Syntax
setVolume(channel, volume)

Arguments

channel audio channel from 0 to 15

volume volume from 0 to 1

Example
handle = loadAudio("DavidSilvera/music_evil_presence")
vol = 0.5
pan = 0.5
speed = 1

playAudio(0, handle, vol, pan, speed, -1)
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Use up arrow to increase volume")
 if c.up then
 vol += 0.01
 endIf
 printAt(0, 1, "Use down arrow to decrease volume")
 if c.down then
 vol -= 0.01
 endIf
 vol = clamp(vol, 0, 1)
 setVolume(0, vol)
 printAt(0, 2, "Volume: ", vol)
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setFilter(), setPan(), startChannel(), stopChannel()

474

475

startChannel()

Purpose

Start an audio channel

Description

Starts sound being played on the specified audio channel

Syntax
startChannel(channel)

Arguments

channel audio channel from 0 to 15

Example
handle = loadAudio("DavidSilvera/music_evil_presence")
volume = 0.5
pan = 0.5
speed = 1

playAudio(0, handle, volume, pan, speed, -1)
loop
 clear()
 c = controls(0)
 printAt(0, 0, "Press A to stop music")
 if c.a then
 stopChannel(0)
 endIf
 printAt(0, 1, "Press B to start music")
 if c.b then
 startChannel(0)
 endIf
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setFilter(), setPan(), setVolume(), startChannel(), stopChannel()

476

stopChannel()

Purpose

Stop an audio channel

Description

Stops sound being played on the specified audio channel

Syntax
stopChannel(channel)

Arguments

channel audio channel from 0 to 15

Example
handle = loadAudio("DavidSilvera/music_evil_presence")
volume = 0.5
pan = 0.5
speed = 1
playAudio(0, handle, volume, pan, speed, -1)

loop
 clear()
 c = controls(0)
 printAt(0, 0, "Press A to stop music")
 if c.a then
 stopChannel(0)
 endIf
 printAt(0, 1, "Press B to start music")
 if c.b then
 startChannel(0)
 endIf
 update()
repeat

Associated Commands

audioLength(), getChannelStatus(), loadAudio(), note2Freq(), playAudio(), playNote(),
setClipper(), setFilter(), setPan(), setVolume(), startChannel()

477

Text Handling

478

chr()

Purpose

Returns the text character of a given unicode value.

Description

The character set used by FUZE4 Nintendo Switch is the official unicode standard.

Syntax
character = chr(number)

Arguments

character A positive number

number The returned text character

Example
// display each capital letter of the alphabet
a = 65

loop
 clear()
 print(chr(a))
 a += 0.1
 if a >= 91 then
 a = 65
 endif
 update()
repeat

Associated Commands

479

chrVal()

Purpose

Returns the unicode character value of a given single character string.

Description

Takes a single text character and returns the official unicode standard value

Syntax
value = chrVal(string)

Arguments

value The returned unicode value

number The given text character

Example
// display each unicode value for the letters in FUZE
letters = ["F", "U", "Z", "E"]

for i = 0 to len(letters) loop
 print(chrVal(letters[i]), " ")
repeat

update()
sleep(3)

Associated Commands

480

cursor()

Purpose

Set the current text cursor position

Description

Set the current cursor position which will be used by the next print function call

Syntax
cursor(x, y)

Arguments

x The horizontal cursor position to start printing.

y The vertical cursor position to start printing.

Example
hideKeyboard()
ink(red)
textsize(50)
message = "Hello World"
cursor((tWidth() - len(message)) / 2, tHeight() / 2)
print(message)
update()
sleep(3)

Associated Commands

drawText(), ink(), len(), print(), printAt(), stringHash(), textSize(), tHeight(), tWidth()

481

drawText()

Purpose

Draw text on the screen

Description

Draw text on the screen at the specified location and size and in the specified colour

Syntax
drawText(x, y, size, colour, text)

Arguments

x horizontal position to start drawing text in pixels

y vertical position to start drawing text in pixels

size height of text in pixels

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

text text to draw

Example
for size = 1 to 200 step 1 loop
 clear()
 centreText("Hello World", size)
 update()
repeat

function centreText(message, size)
 textSize(size)
 tw = textWidth(message)
 drawText((gWidth() - tw) / 2, (gHeight() - size) / 2, size, white, message)
return void

482

Associated Commands

cursor(), ink(), len(), print(), printAt(), stringHash(), textSize(), tHeight(), tWidth()

483

ink()

Purpose

Set the ink colour for text printing

Description

Sets the default colour for text printing functions

Syntax
ink(colour)

Arguments

colour colour name or RGB values { red, green, blue, opacity } between 0 and 1

Example
hideKeyboard()
ink(red)
textSize(50)
message = "Hello World"
cursor((tWidth() - len(message)) / 2, tHeight() / 2)
print(message)
update()
sleep(3)

Associated Commands

cursor(), drawText(), len(), print(), printAt(), stringHash(), textSize(), tHeight(), tWidth()

484

len()

Purpose

Find the length of a string or array

Description

Returns the number of characters in a text string or the number of items in an array

Syntax
stringlen = len(string)

arraylen = len(array)

Arguments

string string to find the lenght of

array array to find the length of

stringlen number of characters in the specified string

arraylen number of entries in the specified array

Example
// Show the length of a string
s = "Hello World"
printAt(0, 0, "Length of ", s, " is ", len(s))

// Show the length of an array
a = []
a[9] = s
printAt(0, 1, "Length of a is ", len(a))
update()
sleep(3)

Associated Commands

cursor(), drawText(), ink(), print(), printAt(), stringHash(), textSize(), tHeight(), tWidth()

485

print()

Purpose

Print text to the screen

Description

Prints text to the screen at the current cursor position and text size and in the current ink colour

Syntax
print(values)

Arguments

values A comma separated list of values to print.

Example
hideKeyboard()
ink(red)
textSize(50)
message = "Hello World"
cursor((tWidth() - len(message)) / 2, tHeight() / 2)
print(message)
update()
sleep(3)

Associated Commands

cursor(), drawText(), ink(), len(), printAt(), stringHash(), textSize(), tHeight(), tWidth()

486

printAt()

Purpose

Print text to the screen at the specfied location

Description

Prints text to the screen at the specfied position and text size and in the current ink colour

Syntax
printAt(x, y, values)

Arguments

x The horizontal cursor position to start printing.

y The vertical cursor position to start printing.

values A comma separated list of values to print.

Example
hideKeyboard()
ink(red)
textSize(50)
message = "Hello World"
printAt((tWidth() - len(message)) / 2, tHeight() / 2, message)
update()
sleep(3)

Associated Commands

cursor(), drawText(), ink(), len(), print(), stringHash(), textSize(), tHeight(), tWidth()

487

str()

Purpose

Convert a value to a string

Description

Convert an integer or floating point number to a string

Syntax
result = str(int)

result = str(float)

Arguments

int int value to be converted

float floating point value to be converted

result string result

Example
hour = "00"
minute = "00"
second = "00"
size = 100.0
textSize(size)

loop
 clear()
 c = clock()
 if c.hour < 10 then
 hour = "0" + str(c.hour)
 else
 hour = str(c.hour)
 endIf
 if c.minute < 10 then
 minute = "0" + str(c.minute)
 else
 minute = str(c.minute)
 endIf
 if c.second < 10 then
 second = "0" + str(c.second)
 else
 second = str(c.second)
 endIf

488

 now = hour + ":" + minute + ":" + second
 tw = textWidth(now)
 drawText((gWidth() - tw) / 2, (gHeight() - size) / 2, size, white, now)
 update()
repeat

Associated Commands

int(), float(), fract(), round(), trunc()

489

strBeginsWith()

Purpose

Used to determine whether a string begins with a specific character or series of characters.

Description

Receives two strings of any length, then returns either true or false to indicate whether the
supplied string begins with the other.

Syntax
result = strBeginsWith(string, to_find)

Arguments

result True (1) or false (0) result to indicate whether the string begins with the search target

string The string being checked

to_find The string being searched for

Example
string = "FUZE"
to_find = "F"

loop
 clear()
 if strBeginsWith(string, to_find)
 print("String '", string, "' begins with '", to_find, "'")
 else
 print("String '", string, "' does not begin with '", to_find, "'")
 endif
 update()
repeat

Associated Commands

str(), strContains(), strEndsWith(), strFind(), strReplace(), stringHash()

490

strContains()

Purpose

Used to determine whether a string contains a specific character or series of characters.

Description

Receives two strings of any length, then returns either true or false to indicate whether the
supplied string contains the other.

Syntax
result = strBeginsWith(string, to_find)

Arguments

result True (1) or false (0) result to indicate whether the string contains the search target

string The string being checked

to_find To string being searched for

Example
string = "FUZE"
to_find = "Z"

loop
 clear()
 if strBeginsWith(string, to_find)
 print("String '", string, "' contains '", to_find, "'")
 else
 print("String '", string, "' does not contain '", to_find, "'")
 endif
 update()
repeat

Associated Commands

str(), strBeginsWith(), strEndsWith(), strFind(), strReplace(), stringHash()

491

strEndsWith()

Purpose

Used to determine whether a string begins with a specific character or series of characters.

Description

Receives two strings of any length, then returns either true or false to indicate whether the
supplied string ends with the other.

Syntax
result = strEndsWith(string, to_find)

Arguments

result True (1) or false (0) result to indicate whether the string ends with the string being
searched for

string The string being checked

to_find The string being searched for

Example
string = "FUZE"
to_find = "E"

loop
 clear()
 if strEndsWith(string, to_find)
 print("String '", string, "' ends with '", to_find, "'")
 else
 print("String '", string, "' does not end with '", to_find, "'")
 endif
 update()
repeat

Associated Commands

str(), strBeginsWith(), strContains(), strFind(), strReplace(), stringHash()

492

strFind()

Purpose

Used to find the location of a string within another.

Description

Receives two strings, one to search and the other to locate. Returns the text character location of
the search target within the supplied string.

Syntax
result = strFind(string, to_find)

Arguments

result Position within string at which the search target appears (begins counting at 0)

string The string being checked

to_find The search target

Example
string = "FUZE"
to_find = "Z"

location = strFind(string, to_find)

print("Search target '", to_find, "' appears at character ", location, " in string '", string, "'")
update()
sleep(5)

Associated Commands

str(), strBeginsWith(), strContains(), strEndsWith(), strReplace(), stringHash()

493

stringHash()

Purpose

Compute a hash for the specified string

Description

A hash function is one can be used to map data of arbitrary size to data of a fixed size. This can be
used for rapid data retreival, deuplication and protection of sensitive data

Syntax
hash = stringHash(string)

Arguments

string string to create the hash from

hash hash for the specified string from

Example
p = input("Enter password", false)
if stringHash(p) == 402054200 then
 print("Correct")
else
 print("Incorrect")
endIf
update()
sleep(3)

Associated Commands

str(), strBeginsWith(), strContains(), strEndsWith(), strFind(), stringHash()

494

strReplace()

Purpose

Used to find a string within another and replace it.

Description

Receives three strings, a string to search, a string to search for, and string to replace the found
string with.

Syntax
newString = strFind(string, to_find, replace)

Arguments

newString Newly created string with the replacement

string The string being checked

to_find The search target

replace The string to replace with

Example
string = "FUSE"
to_find = "S"
replace = "Z"

newString = strFind(string, to_find, replace)

print(newString)
update()
sleep(3)

Associated Commands

str(), strBeginsWith(), strContains(), strEndsWith(), strFind(), stringHash()

495

textSize()

Purpose

Sets the size of text

Description

Sets the default text size (height) to be used by the print functions

Syntax
textSize(size)

Arguments

size The size (height) of text to be used by print and printat functions

Example
message = "Hello World"
for size = 1 to 200 step 1 loop
 clear()
 textSize(size)
 tw = textWidth(message)
 drawText((gWidth() - tw) / 2, (gHeight() - size) / 2, size, white, message)
 update()
repeat

Associated Commands

cursor(), drawText(), ink(), len(), print(), printAt(), stringHash(), tHeight(), tWidth()

496

textWidth()

Purpose

Find the width in pixels of a string

Description

Receives a single string argument, returns the width (in pixels) of the given string

Syntax
result = textWidth(text)

Arguments

text text to find the size of

result width of the text at the current textSize

Example
message = "Hello World"
for size = 1 to 200 step 1 loop
 clear()
 textSize(size)
 tw = textWidth(message)
 drawText((gWidth() - tw) / 2, (gHeight() - size) / 2, size, white, message)
 update()
repeat

Associated Commands

cursor(), drawText(), ink(), len(), print(), printAt(), stringHash(), textSize(), tHeight(), tWidth()

497

498

tHeight()

Purpose

Get the text height of the display

Description

Find the number of characters that will fit on the screen vertically at the current text size

Syntax
textheight = tHeight ()

Arguments

textheight The number of characters that will fit on the screen vertically at the current fontsize

Example
clear()
textSize(100)
for y = 0 to tHeight() loop
 for x = 0 to tWidth() loop
 printAt(x, y, y + 1)
 update()
 repeat
repeat

for i = 1 to 100 loop
 update()
repeat

Associated Commands

499

cursor(), drawText(), ink(), len(), print(), printAt(), stringHash(), textSize(), tWidth()

500

tWidth()

Purpose

Get the text width of the display

Description

Find the number of characters that will fit on the screen horizontally at the current text size

Syntax
textwdith = tWidth()

Arguments

textwdith The number of characters that will fit on the screen horizontally at the current fontsize

Example
textSize(100)
for y = 0 to tHeight() loop
 for x = 0 to tWidth() loop
 printAt(x, y, (x + 1) % 10)
 update()
 repeat
repeat
for i = 1 to 100 loop
 update()
repeat

Associated Commands

cursor(), drawText(), ink(), len(), print(), printAt(), stringHash(), textSize(), tHeight()

501

502

Time and Date

503

clock()

Purpose

Get the current date and time

Description

Returns a structure containing the current system date and time

Syntax
c = clock()

Arguments

c.year current year

c.month current month of the year (1-12)

c.day current day of the month (1-31)

c.hour current hour (1-24)

c.minute current minute (0-59)

c.second current second (0-59)

Example
hour = "00"
minute = "00"
second = "00"
size = 100.0
textSize(size)
loop
 clear()
 c = clock()
 if c.hour < 10 then
 hour = "0" + str(c.hour)
 else
 hour = str(c.hour)
 endIf
 if c.minute < 10 then
 minute = "0" + str(c.minute)
 else
 minute = str(c.minute)
 endIf
 if c.second < 10 then
 second = "0" + str(c.second)
 else

504

 second = str(c.second)
 endIf
 now = hour + ":" + minute + ":" + second
 tw = textWidth(now)
 drawText((gwidth() - tw) / 2, (gheight() - size) / 2, size, white, now)
 update()
repeat

Associated Commands

setTimer(), sleep(), startTimer(), stopTimer(), time()

505

setTimer()

Purpose

Create a new timer

Description

Create a new timer which is used to call a function a number of times with a fixed interval

Syntax
handle = setTimer(interval, count, functionName(arguments))

Arguments

handle The handle of the timer

interval The interval between each function call

count The number of times to call the function

functionNameThe function to call

arguments The arguments to pass to the function

Example
count = 10
handle = setTimer(1, 11, showCount())
stopTimer(handle)

loop
 c = controls(0)
 printAt(0, 0, "Press A to start timer")
 if c.a then
 startTimer(handle)
 endIf
 printAt(0, 1, "Press B to stop timer")
 if c.b then
 stopTimer(handle)
 endIf
 update()
repeat

function showCount()
 clear()
 textSize(500)
 printAt(tWidth() / 2, tHeight() / 2, count)
 textSize(29)

506

 count -= 1
return void

Associated Commands

clock(), sleep(), startTimer(), stopTimer(), time()

507

sleep()

Purpose

Go to sleep

Description

Do nothing (and become unresponsive) for the specified period

Syntax
sleep(time)

Arguments

time Time to sleep for in seconds

Example
print("Wait for 3 seconds")
update()
sleep(3)

Associated Commands

clock(), setTimer(), startTimer(), stopTimer(), time()

508

startTimer()

Purpose

Start a timer

Description

Start a timer that has been stopped with stopTimer

Syntax
startTimer(handle)

Arguments

handle handle of the timer from settimer

Example
count = 10
handle = setTimer(1, 11, showCount())
stoptimer(handle)

loop
 c = controls(0)
 printAt(0, 0, "Press A to start timer")
 if c.a then
 startTimer(handle)
 endIf
 printAt(0, 1, "Press B to stop timer")
 if c.b then
 stopTimer(handle)
 endIf
 update()
repeat

function showCount()
 clear()
 textSize(500)
 printAt(tWidth() / 2, tHeight() / 2, count)
 textSize(29)
 count -= 1
return void

Associated Commands

clock(), setTimer(), sleep(), stopTimer(), time()

509

stopTimer()

Purpose

Stop a timer

Description

Stop a timer that has been started with setTimer or startTimer

Syntax
stopTimer(handle)

Arguments

handle handle of the timer from settimer

Example
count = 10
handle = setTimer(1, 11, showCount())
stopTimer(handle)
loop
 c = controls(0)
 printAt(0, 0, "Press A to start timer")
 if c.a then
 startTimer(handle)
 endIf
 printAt(0, 1, "Press B to stop timer")
 if c.b then
 stopTimer(handle)
 endIf
 update()
repeat

function showCount()
 clear()
 textSize(500)
 printAt(tWidth() / 2, tHeight() / 2, count)
 textSize(29)
 count -= 1
return void

Associated Commands

clock(), setTimer(), sleep(), startTimer(), time()

510

time()

Purpose

Get the current system tick count

Description

Returns the current system tick value in seconds

Syntax
result = time()

Arguments

result current system tick value in seconds

Example
loop
 clear()
 printAt(0, 0, time())
 wait(3)
 printAt(0, 1, time())
 wait(3)
 update()
repeat

// wait for interval seconds
function wait(interval)
 now = time()
 end = now + interval
 while end > now loop
 update()
 now = time()
 repeat
return void

Associated Commands

clock(), setTimer(), sleep(), startTimer(), stopTimer()

511

Intro

Millions of years ago our world was invaded by a species of bodiless creatures called the Geeks.
Millenia upon millennia passed. They waited. They waited some more. They grew bored.
Eventually Humans evolved. The Geeks watched. At first, they were entertained by the Human’s
incessant ability to invent utterly useless things they would place a great and much misguided
importance upon. They watched some more. They grew bored again.

Eventually the Geeks became able to influence the thoughts and actions of the Humans. Among
many other fantastic contributions to Human nature, one single phrase, a single phrase above all
others, was to entrench itself deep into Human consciousness. It was: “The Geek shall inherit the
Earth”.

However, over the next couple of thousand years this somehow mutated into “The meek shall
inherit the Earth”.

The Geeks were not pleased by this misrepresentation and went to work on correcting the
problem. Over the next few hundred years and up until the mid-20th century the Geeks perfected
a method of taking over the hearts and minds of thousands of Humans. Instead of inventing new
types of chair, handbag or another fancy cheese, they put their minds to developing powerful
computational technologies that would pave the way for a new dawn of invention and
entertainment.

The first wave of these new systems were far too complex for ordinary, unoccupied Humans to
comprehend but more were soon to follow. Then, in the 1970s the Home Computer arrived and,
finally, computing for the masses that even the lowliest of Human intelligence could grasp.

Alan Turing, Bill Gates, Steve Wozniak, Steve Jobs, Grace Murray Hopper, Nolan Bushnel, Jack
Tramiel, Sir Clive Sinclair, Seymour Crey, Ada Lovelace, Charles Babbage, Gottfried Leibniz,
Hermann Hauser and Chris Curry are but just a few of the most famous and recognised Geeks.
There are many, many more and by far too many to mention but one thing is certain. It was not
long ago that they got their way and fulfilled their dream. Take a look around you… The Geeks
certainly did inherit the earth!

FUZE Technologies Ltd knows a good thing when it sees it and it wants a piece of the action. FUZE4

Nintendo Switch is our offering to budding Geeks everywhere. We hope you like it.

Thank You

FUZE4 Nintendo Switch has been developed in the UK by a very small team. It is also a project that
has run alongside the usual FUZE activities including delivering hundreds of FUZE Coding
workshops to young people across the UK. When we originally announced we were embarking on
the project a web page accepting donations was introduced on the FUZE website.

512

We can’t shout this loud enough, but a HUGE thank you from our team to all our donators. It meant
the world to us to receive your support and we would not have made it without you!

Additional thanks for their ongoing support, encouragement and general
awesomeness goes to:

Charlie! Shila Odedra-Silvera, Leonard Teague, Helen & Anna Silvera, Emma, Mark and Josh
Mulcahy, Nic, Caroline and Josh, Philip Prall, Jared Forrester, James Hands, Lucie Dickinson, Luke
Schofield, Christian Hegyi, Martin White, Anil & Milan Modhwadia, Andrew and Lorna Johns, Ellis
Durden, James Silcox of Reach the Core, John Ronane, Dawn, Chris, Charlotte and Elizabeth
Basnett, Rod and Iris Ellis, Shane, Leanne, Luke and Mia Ellis, The Rgt Honourable John Bercow,
Ickford Combined School, Wheatley Park School, The Hall School, John Hampden School, Alex and
Vicki and Adrian Mietusiewicz

The FUZE team

Jon Silvera Paragon of Adjudication & Execution, Founder & CEO / Project Manager & Investor

Jon Clough Paragon of Integrity, Finance Director & Investor

Derek Taylor Investor

Colin Bodley Paragon of Stoicism, Programmer’s Reference Guide, Help contributor, product
tester and Investor

Luke Mulcahy Paragon of Wisdom, Lead Programmer including 3D, 2D & Audio engines, Editor
and much, much more

David Silvera Paragon of Truth, Designer, Programmer, Tutorials & help content & Audio Assets /
technical consultant and Head Tutor

Will Tice Programmer including User Interface, Editor support, 2D Sprites, Map and image tools
and much more

Kat Deak Paragon of Artistry, 3D Graphics artist & contributor, 3D model quality control &
product testing

Mike Green Additional programming support, web development and product quality control

Molly Odedra-Silvera Paragon of Oration, Marketing support, Product tester, quality control and
Assistant Tutor

Lizzie Botelle Paragon of Orthography, Product tester & quality control

Ben Taylor Product tester, quality control and Assistant Tutor

Grace Odedra-Silvera, Charlotte Reeve, Hannah & Mica Assistant Tutors

513

Contact

FUZE Technologies Ltd 15 Clearfields Farm Wotton Underwood Aylesbury, HP18 0RE United
Kingdom

email: contact@fuze.co.uk phone: 44 (0)1844 239 432 social: @fuzecoding web: fuze.co.uk

License agreements

Contributing Artist Agreements (Jessica Clayton / Alienoutcast) - (Luis Zuno / ANSIMUZ) - (Hasan
Bayat / Bayat) - (Michael Lohr / Broken Vector) - (Colin Brown) - (David Silvera / FUZE
Technologies Ltd) - (Dominik Gabriel / Cryptogene) - (Ajay Karat / Devil’s Garage) - (Valerij
Golovin / DinV Studio) - (Eder Avila Muniz / EderMuniz) - (Emerald Eel Entertainment) - (Keith
Fox / Fertile Soil Productions) - (Jason Perry / finalbossblues) - (Gijs De Mik) - (Kat Deak / FUZE
Technologies Ltd) - (Kenney Vleugels / Pixeland Parkstad / Kenney) - (Graeme Houston / Kuro
Ren) - (Hamza Cavus / MoonStar) - (Pipo / Hiroshi Suzuki) - (Jei Oakley / Pixelsnplay) - (Tomás
Laulhé / Quaternius) - (Krzysztof Dycha / Ravenmore) - (Joshua Von Ros / RVROS) - (Lavinia /
Selavi Games) - (Felipe Díaz Flores / Sinestesia) - (Stijn Van Wakeren) - (William S. Tice / Untied
Games) - (Vadi Godfried / Vadi-Va)

All game assests are provided under the following agreement:

User License Agreement for game assets included with FUZE®4 Nintendo Switch

Definitions:

FUZE FUZE® is a coding environment designed to make it as easy as possible to learn to code and
program games. It is available on multiple hardware platforms.

ASSETS Digitally represented 2D artwork, tile maps, sprite sheets, 3D models, 3D animations and
materials, screen fonts, audio clips, music and any other game related content supplied with the
intention of being used to create games or applications in the FUZE coding environment.

ARTIST [LICENSOR] LICENSOR Original author responsible for the creation and or supply of
ASSETS.

COMPANY FUZE Technologies Ltd. The developer and worldwide exclusive publisher of FUZE.

USER Recipient, having acquired the use of the FUZE coding environment on any platform.

Therefore: It is understood that LICENSOR has granted COMPANY the non-exclusive right to
bundle ASSETS with FUZE on its associated platforms. While ASSETS may be available from other
sources the license granted to COMPANY is specific to COMPANY and should not be misconstrued
with any other license provided by LICENSOR to any other party.

Specifically: COMPANY grants the USER the right to include, edit and or manipulate ASSETS for
use within their own FUZE projects. The USER must clearly display attribution to the LICENSOR
and FUZE within the project and, in the case of commercial versions, on any marketing materials
promoting the project.

514

USER may not, without explicit written approval from LICENSOR, redistribute ASSETS for free or
commercially outside the scope of being included within USER projects. USER projects may not
invite the extraction of ASSETS.

USER may not sublicense or redistribute ASSETS beyond the scope of this agreement or in any
standalone format to any third party.

For the avoidance of doubt USER may include ASSETS in their own FUZE projects but not
redistribute in any way outside the scope of this agreement.

There is no date period to this agreement. It remains in force unless released by COMPANY.

If in doubt or if you would like to discuss this license please email contact@fuze.co.uk

© FUZE Technologies Ltd. Company Registration Number 08837428. 15 Clearfields Farm, Wotton
Underwood, Buckinghamshire, HP18 0RS, England

FUZE End User LICENSE Agreement 1) Definitions The following definitions apply to this
agreement:

a. “FUZE” being the company, FUZE Technologies Ltd as registered in the United Kingdom,
registration number: 8837428

b. “SOFTWARE” refers to the product LICENSE under this agreement, the application in object
code and or binary formats including UPDATEs and ASSETS.

c. “ASSETS” refers to the ‘video game’ content included in a FUZE PRODUCT in addition to the
SOFTWARE, such as 3D model files and object files, audio files, video files and image files, as
well as other sounds and templates that contain such files.

d. “DEVICE” refers to any electronic physical or virtual computing device (e.g. PC, laptop,
workstation, video game console, tablet, mobile phone, an instance of a virtual machine, etc.).

e. “UPDATE” refers to an updated version of SOFTWARE. An UPDATE constitutes a modified,
improved or fixed version of SOFTWARE. It does not include new versions of a SOFTWARE.

f. “LICENSE” refers to the LICENSE assigned to a specific DEVICE belonging to the customer
following installation and if required activation of the SOFTWARE.

g. “CONTRIBUTING ARTIST” refers to the artist responsible for creating ASSETS included with
the SOFTWARE.

h. “OFFICIAL CHANNELS” refers to the sales distribution network of approved resellers
appointed by FUZE.

i. “COMMERCIAL USE” means use of the SOFTWARE or ASSETS for the direct or indirect
purpose of financial benefit (e.g. by means of sale, licensing, advertising, etc.).

2) Purpose a. Subject to the conditions within and for the duration of this agreement, FUZE grants
you (the user) the non-exclusive and non-transferable right to use the respective SOFTWARE on
one DEVICE. FUZE retains ownership, copyright and other proprietary rights related to the
SOFTWARE. You (the customer) acknowledge FUZE’s ownership as well as all proprietary rights
to the SOFTWARE, ASSETS, backup copies and documentation. The buyer of the SOFTWARE is
solely responsible for the proper contractual use of the SOFTWARE. b. Only users who have
purchased the SOFTWARE via OFFICIAL CHANNELS are authorized to receive UPDATEs.

3) Installation and Registration a. Depending on the DEVICE you are installing SOFTWARE on-
to you may receive a unique LICENSE number to enter during installation. An online registration

515

may also be required before SOFTWARE is activated. If the number of user installations exceeds
the number of allowed installations specified in the LICENSE is exceeded, the LICENSE may be
deactivated by FUZE. In such cases the user should contact FUZE to request reactivation.

4) LICENSE verification a. SOFTWARE generally requires an internet connection to install and
activate.

5) Using the SOFTWARE and ASSETS for commercial purposes a. Where technically possible
the SOFTWARE may be used for commercial purposes subject to the terms in clause 6.

6) ASSETS a. Where technically possible ASSETS may be used for commercial purposes subject to
the terms in clause 6 and as specified in the CONTRIBUTING ARTIST Agreements. This applies to
games, demos, applications, example programs and or modified versions of the ASSETS or any
project including any ASSET. b. FUZE grants the user the right to include, edit and or manipulate
ASSETS for use within their own FUZE projects. The user must clearly display attribution to the
CONTRIBUTING ARTIST and FUZE within the project and on any materials promoting the
project. c. Exploitation of ASSETS outside the scope of personally created work, i.e. outside of
SOFTWARE, is prohibited. For the avoidance of doubt; ASSETs, Programs, Projects, Manuals,
Demonstration and examples may not be extracted and used separately for commercial or non-
commercial purposes. d. User may not, without explicit written approval from LICENSOR,
redistribute ASSETS for free or commercially, outside the scope of being included within a user’s
project. User projects may not invite the extraction of ASSETS. e. Users may not sublicense or
redistribute ASSETS beyond the scope of this agreement or in any standalone format to any third
party.

7) Copying, renting and redistribution a. You are prohibited from copying the licensed program
and the written documentation either partially or in its entirety. This excludes your right to make
a digital copy of the software for backup purposes. Back-up copies may not be redistributed. b.
The SOFTWARE as well as the written documentation may not be commercially rented out or
commercially lent in any other form to a third party in exchange for payment. This also applies to
lending of the SOFTWARE in a pre-installed form on a DEVICE that is commercially offered to
third parties in exchange for payment. c. You may not make any changes to the SOFTWARE,
personally or by third parties. You may not disassemble the SOFTWARE into its components, nor
modify the object code, decode, copy or use it in any way other than that foreseen in the contract.

8) Transfer of rights a. The transfer of rights and obligations under this agreement to third
parties is only permitted on authorisation from FUZE with the exception of personal transfer of
the legally acquired SOFTWARE by the rightful owner. In case of the ownership of the rightfully
acquired SOFTWARE being transferred in this fashion, the original owner is obliged to destroy all
back-up copies and to delete the installation. A digital transfer of a SOFTWARE (a download) is
prohibited.

9) Guarantee and liability a. You are aware that software programs, ASSETS and associated
documentation may contain errors, and that it is not possible to develop data processing
programs in such a way that they are error-free for all usage scenarios and all customer
requirements, or error-free in conjunction with all third-party programs and hardware. FUZE
provides no assurances of particular features and usability related to planned customer-specific
applications. b. In case of paid products and services, FUZE is only liable to slight negligible
damages incurred by it or its assistant(s) if a duty is violated, even if it is extra-contractual, the
adherence to which is of special importance in order to be in compliance with contractual use

516

(Cardinal duty), as well in cases of damage to life, body and health. c. For non-observance of a
cardinal obligation, the liability is limited to the damage which must be typically expected within
the scope of this agreement if there is no intention or gross negligence or if FUZE must incur
liability because of fatal injury, physical injury or health hazards. d. FUZE shall not be liable for
damage which can be controlled by the other contracting party or which the other contracting
party could have prevented by taking measures which can be reasonably expected. FUZE is not
liable for data loss. e. In any event, FUZE’s liability is limited to four times the amount paid for the
LICENSE fee by the customer. This exclusion does not apply to damage caused through intent or
gross negligence on the part of FUZE. f. In case of paid products and services, the guarantee
against deficiency in material and defects in title is limited to fraudulent concealment of defects by
FUZE in consideration of free licensing of the product. g. Statutory liability in case of personal
damages and damages pursuant to the Product Liability Act remains unaffected. h. A change in the
burden of proof to the disadvantage of the customer is not related to the foregoing provision. i.
Insofar as SOFTWARE contains functions that operate via an online server, FUZE retains the right
to end the offering at any time. Availability will not be guaranteed.

10) Licence conditions of other manufacturers a. If the SOFTWARE contains additional
software from other manufacturers, or should additional software be integrated, then compliance
with the use and license conditions of the manufacturer of said delivered additional software is
also compulsory. If SOFTWARE contains additional software, you can view the respective use and
licensing terms in the corresponding file.

11) Support a. FUZE offers electronic Internet support during the warranty period. This
encompasses clarification of installation questions and installation problems by Internet or email.
The rendering of support is at the sole discretion of FUZE and is not connected with any guarantee
or warranty.

12) Other a. This agreement constitutes the entire agreement of the parties regarding the
contract purpose. Collateral agreements shall not exist. No verbal or written statements made by
FUZE or any FUZE employee can alter or question the validity of this LICENSE agreement.

13) Validity of contractual conditions a. Should one or more of the conditions in this contract be
or become invalid, this will not affect the validity of the remaining contract. A substitute provision
will replace the invalid condition, such as comes closest to the intended purpose. The contract is
subject to the laws of the United Kingdom.

517

Quick Reference

518

2D Graphics

box (x, y, width, height, colour, outline)

centreSpriteCamera (pos)

centreSpriteCamera (xpos, ypos)

circle (x, y, radius, vertices, colour, outline)

collideMap (sprite)

result = collideSprites (spriteA, spriteB, resolve1, resolve2)

handle = copyImage (imageHandle, source)

copyShape (shape)

createBox (x, y, width, height)

createCircle (x, y, radius, vertices)

createCurve (point1, point2, … pointN)

createCurve (points)

handle = createImage (width, height, filter, type)

createLine (x1, y1, x2, y2)

createLineStrip (point1, point2, … pointN)

createLineStrip (points)

createPoly (point1, point2, … pointN)

createPoly (points)

handle = createSprite ()

createStar (x, y, innerRadius, outerRadius, numPoints)

createTriangle (x1, y1, x2, y2, x3, y3)

deleteShape (shape)

result = deltaTime ()

result = detectMapCollision (sprite)

result = detectSpriteCollision (spriteA, spriteB)

drawImage (handle, x, y)

drawImage (handle, x, y, scale)

519

drawImage (handle, { sourceX, sourceY, sourceW, sourceH , { x, y, width, height })}

drawImageEx (handle, location, rotation, scale, tint, origin)

drawMap ()

drawMapLayer (layer)

drawQuad (handle, { sourcex, sourcey, sourcew, sourceh , points, tint)}

drawShape (shape)

drawSheet (handle, tileno, { xpos, ypos, width, height)}

drawSprite (sprite)

drawSprites ()

freeImage (handle)

getShapeBounds (shape)

getShapeLocation (shape)

getShapeRotation (shape)

getShapeScale (shape)

getShapeTint (shape)

result = getSpriteAnimFrame (sprite)

result = getSpriteAnimFrameCount (sprite)

vectorResult = getSpriteAnimSpeed (sprite)

vectorResult = getSpriteCamera ()

result = getSpriteCameraRotation ()

vectorResult = getSpriteColour (sprite)

vectorResult = getSpriteColourSpeed (sprite)

result = getSpriteDepth (sprite)

handle = getSpriteImage (sprite)

vectorResult = getSpriteImageSize (sprite)

vectorResult = getSpriteLocation (sprite)

vectorResult = getSpriteOrigin (sprite)

result = getSpriteRotation (sprite)

result = getSpriteRotationSpeed (sprite)

520

vectorResult = getSpriteScale (sprite)

vectorResult = getSpriteScaleSpeed (sprite)

vectorResult = getSpriteSize (sprite)

vectorResult = getSpriteSpeed (sprite)

result = getSpriteVisibility (sprite)

getVertex (shape, vertex)

getVertexColour (shape, vertex)

getVertexLineColour (shape, vertex)

getVertexLineThickness (shape, vertex)

result = imageH (image)

vectorResult = imageSize (sprite)

result = imageW (image)

joinShapes (shape1, shape2)

line (point1, point2, colour)

handle = loadImage (filename)

handle = loadImage (filename, filter)

loadMap (filename)

moveShape (shape, x, y)

moveShape (shape, axes)

result = numTiles (tilesheet)

numVerts (shape)

plot (x, y, colour)

removeSprite (sprite)

renderEffect (image, target, effect, arguments)

rotateShape (shape, amount)

scaleShape (shape, scale)

scaleShape (shape, dirX, dirY)

setBlend (mode)

setShapeColour (shape, colour)

521

setShapeLineStyle (shape, thickness, tint)

setShapeLocation (shape, x, y)

setShapeLocation (shape, location)

setShapeRotation (shape, amount)

setShapeScale (shape, scale)

setShapeScale (shape, scaleX, scaleY)

setShapeScaleModeLocal (shape, enabled)

setShapeTint (shape, tint)

setSpriteAnimation (sprite, startTile, endTile)

setSpriteAnimation (sprite, startTile, endTile, speed)

setSpriteAnimFrame (sprite, frame)

setSpriteAnimSpeed (sprite, speed)

setSpriteCamera (pos)

setSpriteCamera (xpos, ypos)

setSpriteCamera (xpos, ypos, zpos)

setSpriteCameraRotation (angle)

setSpriteCollisionShape (sprite, shape)

setSpriteCollisionShape (sprite, shape, width, height, rotation)

setSpriteColour (sprite, colour)

setSpriteColour (sprite, red, green, blue, alpha)

setSpriteColourSpeed (sprite, rgbaSpeed)

setSpriteColourSpeed (sprite, rSpeed, gSpeed, bSpeed, aSpeed)

setSpriteDepth (sprite, depth)

setSpriteImage (sprite, image)

setSpriteLocation (sprite, pos)

setSpriteLocation (sprite, xpos, ypos)

setSpriteOrigin (sprite, pos)

setSpriteOrigin (sprite, xpos, ypos)

setSpriteRotation (sprite, angle)

522

setSpriteRotationSpeed (sprite, rotationSpeed)

setSpriteScale (sprite, scale)

setSpriteScale (sprite, { xScale, yScale)}

setSpriteScaleSpeed (sprite, scaleSpeed)

setSpriteScaleSpeed (sprite, xScaleSpeed, yScaleSpeed)

setSpriteSpeed (sprite, speed)

setSpriteSpeed (sprite, xspeed, yspeed)

setSpriteText (sprite, fontsize, tint, arguments)

setSpriteVisibility (sprite, visibility)

setVertex (shape, vertex, position)

setVertexColour (shape, vertex, colour)

setVertexLineStyle (shape, vertex, thickness, tint)

setView (left, top, right, bottom)

vectorResult = tileSize (image, tile)

triangle (point1, point2, point3, colour, outline)

updateSprite (sprite)

updateSprite (sprite, deltatime)

updateSprites ()

updateSprites (sprites)

updateSprites (deltatime)

updateSprites (sprites, deltatime)

uploadImage (pixeldata, width, height, filter)

3D Graphics

result = animationLength (object, animation)

handle = createTerrain (gridsize, filter)

drawObjects ()

handle = loadModel (filename)

result = numAnimations (object)

objectPointAt (handle, point)

523

handle = placeObject (object, location, scale)

handle = pointLight (position, colour, brightness)

handle = pointShadowLight (position, colour, brightness)

removeLight (light)

removeObject (handle)

rotateObject (handle, axes, amount)

setAmbientLight (colour)

setCamera (location, target)

setFov (angle)

setLightBrightness (light, brightness)

setLightColour (light, colour)

setLightDir (light, direction)

setLightPos (light, position)

setLightSpread (light, spread)

setObjectMaterial (handle, colour, metallic, roughness)

setObjectPos (handle, pos)

setObjectScale (handle, scale)

setTerrainPoint (terrain, xpos, ypos, height, colour)

handle = spotLight (position, direction, colour, brightness, spread)

updateAnimation (object, animation, frame)

updateTerrain (terrain, heights, colours)

handle = worldLight (direction, colour, brightness)

worldShadowLight (centre, direction, colour, brightness, range, resolution)

Arithmetic

result = abs (number)

result = acos (cosine)

result = asin (sine)

result = atan (tangent)

result = atan2 (x, y)

524

vectorResult = bezier (point1, point2, point3, factor)

vectorResult = bezier (point1, point2, point3, point4, factor)

result = bitCount (number)

ceil (number)

result = clamp (number, minimum, maximum)

result = cos (angle)

vectorResult = cross (vector1, vector2)

result = distance (point1, point2)

result = dot (vector1, vector2)

result = float (value)

result = floor (number)

result = fract (value)

result = int (value)

result = length (vector)

result = lerp (v0, v1, t)

result = max (number1, number2)

result = min (number1, number2)

vectorResult = normalize (vector)

result = pow (number, power)

radians (enable)

result = random (range)

vectorResult = reflect (incident, normal)

vectorResult = refract (incident, normal, ior)

rnd (range)

result = round (value)

result = rsqrt (number)

result = sin (angle)

result = sinCos (angle)

result = smoothStep (value0, value1, factor)

525

result = sqrt (number)

result = tan (angle)

result = trunc (value)

Binary

result = bitFieldExtract (number, start, count)

result = bitFieldInsert (number, start, count, value)

result = bitGet (number, bit)

result = bitSet (number, bit, value)

result = leadingZeroes (value)

result = trailingZeroes (value)

File Handling

close (handle)

open ()

read (handle, count)

seek (handle, position)

write (handle, text)

Input

structure = controls (index)

result = docked ()

result = getKeyboardBuffer ()

hideKeyboard ()

result = input (prompt, multiline)

showKeyboard ()

list = touch ()

Screen Display

clear ()

clear (colour)

result = gHeight ()

526

result = gWidth ()

setDrawTarget (target)

setMode (width, height)

update ()

Sound and Music

result = audioLength (handle)

status = getChannelStatus (channel)

handle = loadAudio (sample)

result = note2Freq (note)

playAudio (channel, handle, volume, pan, speed, loops)

playNote (channel, wave, frequency, volume, speed, pan)

pulseRumble (controller, channel, speed, volume, frequency)

setClipper (channel, threshold, strength)

setEnvelope (channel, speed)

setFilter (channel, type, cutoff)

setFrequency (channel, frequency)

setModulator (channel, wave, frequency, scale)

setPan (channel, pan)

setReverb (channel, delay, attenuation)

setRumble (controller, channel, volume, frequency)

setVolume (channel, volume)

startChannel (channel)

stopChannel (channel)

Text Handling

chr (number)

chrVal (string)

cursor (x, y)

drawText (x, y, size, colour, text)

ink (colour)

527

result = len (string)

result = len (array)

print (values)

printAt (x, y, values)

str (int)

str (float)

result = strBeginsWith (string, to_find)

result = strContains (string, to_find)

strEndsWith (string, to_find)

strFind (string, to_find)

result = stringHash (string)

strReplace (string, to_find, replace)

textSize (size)

result = textWidth (text)

result = tHeight ()

result = tWidth ()

Time and Date

structure = clock ()

handle = setTimer (interval, count, functionName(arguments))

sleep (time)

startTimer (handle)

stopTimer (handle)

result = time ()

528

Tutorials

529

Tutorial 1: Loops

Every programmer must start somewhere. In this tutorial, we’ll be writing a version of perhaps
the most famous program in existence: Hello World.

Before we jump right in, we need a couple of things. We’ll need a print() function to instruct
FUZE4 Nintendo Switch what to print. We’ll also need an update() function to update the screen
with the text we want and finally, we’ll need a sleep() function at the end so our program stays on
screen!

Type (or copy and paste) the code below into the FUZE code editor. Run the program with +, or
the F5 key if you’re using a USB keyboard.

 1. print("Hello Nintendo")
 2. update()
 3. sleep(2)

We should see our chosen text appear magnificently on screen for 2 seconds. Now let’s make
FUZE do this over and over again, using one of the most important concepts in programming: a
loop. For this, we can remove the sleep() function because our program will run continuously. We
will still need the update() though, because we want our text to appear on the screen!

 1. loop
 2. print("Hello Nintendo")
 3. update()
 4. repeat

Think of a loop like a sandwich. We have a top piece of bread (loop), some filling in the middle and
a bottom piece of bread (repeat)! Without one of the pieces of bread, our sandwich is no longer a
sandwich!

What I’m saying is…

Without loop, repeat will do nothing and vice-versa!

There is an important point when it comes to loops. Take a look below:

 1. loop
 2. print("Hello Nintendo")
 3. update()
 4. repeat
 5. print("What about me?")

See the new print() function on line 5? This line will never appear on screen. Why?

When FUZE gets to the repeat keyword on line 4, it returns to the last loop keyword. So, our
program will read:

Line 1, line 2, line 3, Line 4… Line 1, line 2, line 3, Line 4… Line 1, line 2, line 3, Line 4…

530

FOREVER! Well… Not quite. It will run until we tell it stop. Press + to stop the program and return
to the editor (use the F5 key if using a USB keyboard).

Line 5 is not in the loop. To make this line happen too, our program must look like this:

 1. loop
 2. print("Hello Nintendo")
 3. print("What about me?")
 4. update()
 5. repeat

Now the new print() line is included inside the loop and is very happy indeed.

Okay. Let’s get some colour going in our program. We use the ink() function to do this.

 1. ink(white)
 2. loop
 3. print("Hello Nintendo")
 4. print("What about me?")
 5. update()
 6. repeat

We’ve used the name for the colours we want, but we can use numbers instead. Every colour is
stored in a big database, each one with a number. We have 64 colours in total to choose from.

This means we can use a random selection for our colours. We’ll need the random() function to
achieve this!

 1. ink(random(64))
 2. loop
 3. print("Hello Nintendo")
 4. print("What about me?")
 5. update()
 6. repeat

The brackets might look a little tricky here. Remember, the whole of random(64) must go in the
brackets for the ink() line. It might look wrong at first, but we must have the same number of
open and close brackets.

To change the colours, you will have to stop and start the program again. A little boring… Let’s
change that!

 1. loop
 2. ink(random(64))
 3. print("Hello Nintendo")
 4. print("What about me?")
 5. update()
 6. repeat

Now we’ve brought the colour line into the loop! Can you predict what will happen?

This way, FUZE will set the random colour on every repetition of the loop!

Let’s say we wanted one colour for “Hello Nintendo” and another colour for “What about me?”.

531

 1. loop
 2. ink(fuzepink)
 3. print("Hello Nintendo")
 4. ink(fuzeblue)
 5. print("What about me?")
 6. update()
 7. repeat

In the example above, line 2 sets a colour for the print() function on line 4. Then, line 4 sets a
different colour for the print() function on line 5. If we want something to affect a specific line, we
must put the instructions before the chosen line.

Finally, let’s change the size of our text with the textSize() function:

 1. textSize(100)
 2. loop
 3. ink(fuzepink)
 4. print("Hello Nintendo")
 5. ink(fuzeblue)
 6. print("What about me?")
 7. update()
 8. repeat

textSize() allows us to set the size of our text in pixels. With textSize(100) the maximum height for
our letters will be 100 pixels tall.

Congratulations! You’ve written the best program ever. It’s all downhill from here.

Functions and Keywords used in this Tutorial

ink(), loop, print(), repeat, sleep(), textSize(), update()

532

Tutorial 2: Variables

Variables are another of the most important parts of programming.

What are they? Well, put very simply a variable is a label. A label you create to store a piece of
information.

Why do we need labels? Well, imagine you were trying to find a needle in a haystack. Quite the
challenge, right? Not if we had a nice big signpost telling us exactly where to find it!

The main reason why we use variables is that they allow us to change and manipulate things in a
program.

Almost every single game uses variables all the time, to keep track of everything from a score to
health to stats to screen position to the controller buttons and so on.

Let’s get started. I hope you like sweets!

 1. sweets = 3

Type the code above into the FUZE4 Nintendo Switch code editor and press + to run the program.

Nothing will happen at all. In fact, you’ll be taken instantly back to the editor!

However, in the computer’s brain we have taken the number 3 and stored it in a place called
sweets.

Now, change your program so that it looks like the one below and run.

 1. sweets = 3
 2. print(sweets)
 3. update()
 4. sleep(2)

All we are doing is instructing FUZE to print the contents of the sweets variable on screen. You
should see the number 3 appear! FUZE is finding the information labeled as sweets, and printing
whatever it finds.

We can store anything in a variable. The code below will also work:

 1. sweets = "Delicious"
 2. print(sweets)
 3. update()
 4. sleep(2)

This time though, we’ll get the word “Delicious” instead of the number 3. Make sense? Great!

Let’s make this a little more complicated. We’ll be using a couple of new, very important things.

533

Change your code in the FUZE4 Nintendo Switch editor so it looks like the program below and
run it. It should count down our sweets until we have none left.

 1. sweets = 3
 2. while sweets > 0 loop
 3. clear(black)
 4. print("I have ",sweets," sweets in my bag.")
 5. print("If I eat one... then... ")
 6. sweets -= 1
 7. update()
 8. sleep(1)
 9. repeat
 10. print("I have no sweets left... Oh no.")
 11. update()
 12. sleep(2)

First things first - we have a brand new function here. clear() is used to clear the screen with a
colour. Try putting a different colour in the brackets.

Notice that on line 3, we have the variable name sweets between commas, not as part of the text.
If we were to say print(“sweets”) we would get the word “sweets”. See the speech marks in the
brackets?

But remember that when we say print(sweets), with no speech marks, we get the contents of the
variable.

Let’s talk about the new things we’ve introduced here. The first one is a new different type of loop
called a while loop.

While

A while loop is a conditional loop, which repeats until a certain condition is met.

This while loop repeats as long as the sweets variable has a value greater than zero (sweets > 0).

For our while loop to actually stop and move on with the program, we must reduce the value of
the sweets variable to 0.

The next tricky part is line 6.

Minus equals (-=) and Plus equals (+=)

The line of code which reduces the value of the sweets variable is line 6.

 6. sweets -= 1

The sign after sweets is called minus equals. We’re going to see these signs a lot as we move
forward, so let’s do our best to understand them. -= means we are subtracting from the value
stored in our variable. += or plus equals is adding to the value.

Really, line 6 actually reads:

 6. sweets = sweets - 1

534

This means: Redefine the sweets variable to be equal to whatever is currently in the sweets
variable muinus 1.

Using -= and += helps us save a lot of time because we don’t need to write every variable name
twice!

Still with us?

Awesome! Using variables becomes second-nature eventually, but it can be a bit strange to get
used to at first.

Try to rewrite the program so that instead of taking sweets away, you begin with 0 sweets and
gain them as the loop continues. You should change the while loop too so the program stops
when you reach a certain number of sweets.

Well done! You reached the end. See you in the next tutorial where we’ll talk about another one of
the core programming techniques - If Then Statements.

Functions and Keywords used in this Tutorial

clear(), loop, print(), repeat, sleep(), update(), while

535

Tutorial 3: If Statements

Onward and upwards! This tutorial will cover another of the most important concepts in
programming: If statements.

This one actually doesn’t need much explaining… We use If Then Statements all the time in normal
life!

Maybe this sounds familiar to you…

“If you do all of your homework, then you can have some extra time playing on your Nintendo
Switch!”

Or perhaps…

“If you eat all of your vegetables, then you can have extra chocolate cake, or else you can go to bed
with no dinner!”

Hopefully those sentences make some sense! An If statement checks if something is happening,
and then does something. If it’s anything else, we do something else!

Okay, enough rambling! Let’s write a small quiz program using what we’ve learned so far.

 1. print("Welcome to the FUZE ultimate quiz of supreme difficulty \n")
 2. update()
 3. sleep(2)
 4. print("Question 1. What is the capital of Japan? \n")
 5. update()
 6. sleep(2)
 7. answer = input("What is the capital of Japan? \n")
 8. if answer == "Tokyo" then
 9. print("CORRECT! Well done! \n")
 10. else
 11. print("INCORRECT! I can't believe you didn't know that... \n")
 12. endif
 13. update()
 14. sleep(3)

We’ve got a new function here, take a look at line 7.

input()

On line 7 we use the input() function to allow the player to type an answer to our question. The
input() function will bring up the FUZE4 Nintendo Switch keyboard on screen to type in
whatever you like. Whatever the player types is stored in a variable. We have called our variable
answer.

536

Something we need when using the input() function is to give the player a prompt message. We
have put a reminder of the question: “What is the capital of Japan?”, but you can use whatever you
like! If you would like to display no prompt simply put empty speech marks in the brackets.

If Then Statement

Lines 8 to 12 are our If Then Statement. It begins with if to state the condition. In the example, we
check if the contents of the variable called answer is exactly equal to the text string “Tokyo”. If it
is, then we print “Correct! Well done!”.

We use the keyword else as part of the if statement to give a different result if the condition is
not met. In this case, we know that if our condition is not met this means the answer is incorrect,
so we can tell the player.

Lastly, we must use endif to finish the if statement, otherwise we will run into some problems
later! Without endif the computer will treat any lines that may follow as part of the if statement.

Single Equals (=) and Double Equals (==)

Notice the double equals sign on line 8? When we are comparing two things, we must use double
equals (==). When we are assigning a value to a variable we use single equals (=)

Keeping Score

Okay… Let’s step this up. We can use a variable to keep track of the player score too and really
turn this into a playable game.

 1. score = 0
 2. print("Welcome to the FUZE ultimate quiz of supreme difficulty \n")
 3. update()
 4. sleep(1)
 5. print("Question 1. What is the capital of Japan? \n")
 6. update()
 7. sleep(2)
 8. answer = input("What is the capital of Japan?")
 9. if answer == "Tokyo" then
 10. print("CORRECT! Well done! \n")
 11. score += 1
 12. else
 13. print("INCORRECT! I can't believe you didn't know that... \n")
 14. endif
 15. update()
 16. sleep(2)
 17. print("You scored... ",score, "\n")
 18. update()
 19. sleep(1)
 20. if score == 1 then
 21. print("Congratulations! Full Marks")
 22. else
 23. print("Better luck next time.")
 24. endif

537

 25. update()
 26. sleep(3)

In the example above we have added a score variable to line 1. It begins at 0 because our player
hasn’t answered any questions yet!

Line 11 is a new line which increases the contents of the score variable by 1 if the player answers
correctly. Remember, we use += to do this.

Next, lines 20 to 24 are a new if statement to give the player a message depending on their score.

Using what we we have learned, can you write 2 more questions for the quiz? You should place
your new questions between line 16 and line 17, because lines 17 to 26 finish the quiz and tell the
player their score.

You will need to change line 20 if score == 1 then to be equal to your maximum total score. For
example, if your quiz contains 3 questions and you score 1 point for each correct answer, the line
should read if score == 3 then

Perhaps use the ink() function to bring your quiz into full colour!

Functions and Keywords used in this tutorial

else, endIf, if, input(), print(), sleep(), then, update()

538

Tutorial 4: Screen

Hello again! In this tutorial we’ll be looking at what the screen is, the basics of how it works, and
how we can use it in our programs.

The screen is a huge collection of tiny, tiny little lights called pixels. There are lots and lots of
them. In your Nintendo Switch screen, there are a whopping 921600 of them. Almost a million!

Whenever your screen is on, whenever you play a game, browse the eShop, or simply look at the
HOME menu, your Nintendo Switch is changing these 921600 little lights at an amazing speed.
About 60 times per second, actually.

Just think about that for moment - it should blow your mind!

X and Y

You’re probably familiar with the x and y axis already. But, just in case you’ve never heard of them
before let’s have a quick look.

The huge collection of pixels we mentioned is arranged into an x axis and a y axis. If something
moves along the x axis, it moves left or right. If something moves along the y axis, it moves up or
down!

Take a look at this picture to see what we mean:

Notice the direction the arrows are pointing? This tells us the way the numbers increase along the
axes.

Both axes begin at 0 and go up 1 pixel at a time, across and down the screen.

Your Nintendo Switch screen has 1280 pixels on the x axis and 720 pixels on the y axis. Multiply
them together to get the 921600 number we mentioned earlier!

539

Take a look at this image to see how the numbers increase along the axes:

The zero in the top left corner tells us that 0 on the x and y axis is in the top left corner of the
screen.

The maximum number for the x axis is the furthest right part of the screen, and the maximum
number for the y axis is the bottom of the screen.

TV Mode and Handheld Mode

Something important to bear in mind is that the screen resolution (the number of pixels in a
screen) changes between Handheld Mode and TV Mode. While your Nintendo Switch Console is
in the dock, the screen resolution will be 1920 by 1080 pixels, rather than 1280 by 720.

Using Screen Co-ordinates in a Program

Let’s say we want to put a circle right in the middle of our screen. We would need to know the
halfway point on both axes. Half of 1280 is 640, and half of 720 is 360.

If we use 640 and 360 as co-ordinates for an x and y position on the screen, we should get
something like this:

Let’s see what this would look like in code.

540

 1. loop
 2. clear()
 3. circle(640, 360, 100, 32, fuzepink, false)
 4. update()
 5. repeat

Nice and simple. We have a loop, we use the clear() function to clear the screen and the update()
function to send our information to the screen.

Take a look at line 3. This line is responsible for creating the circle.

The circle() function needs 6 pieces of of information in brackets, separated by commas.

The first number in the brackets is the x axis position. The second number is of course the y axis
position! There’s our co-ordinates!

The third number (100) is the size of the circle. Actually, the real name for this is the radius of the
circle - the distance in pixels from the middle of the circle to the edge. If our circle has a radius of
100 pixels, it means the circle is 200 pixels wide in total.

Next up, we have the number of sides. Yes, you read that right. This circle has 32 sides. We see it as
very smooth because the sides are incredibly small. We can change this number to change how
our circle looks - in fact, we can turn it into a totally different shape by changing this number! Try
putting some different numbers here to see what we mean.

Moving the Circle

If we want out circle to move, we’ll need some variables to store the x and y positions.

Change your code to look like the program below. It won’t behave any differently just yet.

 1. x = 640
 2. y = 360
 3. size = 100
 4.
 5. loop
 6. clear()
 7. circle(x, y, size, 32, fuzepink, false)
 8. update()
 9. repeat

Now we have used variables to display the circle on screen. Everything is exactly the same, except
we can change these during the program to move the circle.

Remember += from the variables tutorial? We’ll be using this here. We are only adding one line of
code, check it out:

 1. x = 640
 2. y = 360
 3. size = 100
 4.
 5. loop
 6. clear()

541

 7. circle(x, y, size, 32, fuzepink, false)
 8. x += 1
 9. update()
 10. repeat

We’ve added one line just after our circle() function. This line increases the value of the x
variable by 1 each time the loop repeats. Because we are using the x variable as the circle’s x
position, this will cause the circle to move across the screen.

Run the program to see! You might notice a little problem though… The circle doesn’t stop!

Making the Circle Bounce

Once the x variable becomes too big our circle is being drawn off screen. In order to make the
circle bounce off the edge and come back, we’ll need a couple of things.

First, we must understand that the reason the circle moves in any particular direction is because
of what we do to the x or y position.

For now, let’s just think about the x axis

If we increase the x position, we are moving to the right. If we decrease the x position, we move to
the left.

 8. x += 1

This is the line responsible for moving the circle.

The speed the circle moves is entirely down to the number we increase the x variable by. At the
moment, we are increasing it by 1 pixel each time the line is read. If we increase this number, the
circle moves faster. Decrease the number and it will move slower. So far so good?

If we store this number in a variable, we can do some interesting things. Change your code to look
like this:

 1. x = 640
 2. y = 360
 3. size = 100
 4. xSpeed = 3
 5.
 6. loop
 7. clear()
 8. circle(x, y, size, 32, fuzepink, false)
 9. x += xSpeed
 10. update()
 11. repeat

We’ve created a new variable on line 4 called xSpeed. This variable is used to control the speed of
circle along the x axis, so it makes sense to name it something like this!

The circle line has changed too. We now use the variable in this line instead of just a number.

Right, now we’re ready to start making the ball bounce!

542

The x variable is increasing all the time. The screen is 1280 pixels wide. When x becomes bigger
than the width of the screen, we know our circle is off screen. We need to do something when that
happens.

For this, we’ll need an if statement. Take a look below:

 1. x = 640
 2. y = 360
 3. size = 100
 4. xSpeed = 3
 5.
 6. loop
 7. clear()
 8. circle(x, y, size, 32, fuzepink, false)
 9. x += xSpeed
 10. if x > gwidth() then
 11. xSpeed = -xSpeed
 12. endif
 11. update()
 12. repeat

Our if statement is on line 10. We check if the x variable has become bigger than (>) gwidth() (the
width of screen). When you run this program, the ball should bounce off the right hand side of the
screen. If you look carefully, you might notice something not quite right.

The x variable is the middle of our circle. So, when x is bigger than the width of the screen, half of
the circle is already gone!

To get the ball bouncing properly off the edge, we must check if x + size has become bigger than
gwidth(). Remember, the size variable is being used as the radius of the circle, which is half of the
total width. Because of this, x + size gives us the exact edge of the circle. Let’s modify the code
slightly:

 1. x = 640
 2. y = 360
 3. size = 100
 4. xSpeed = 3
 5.
 6. loop
 7. clear()
 8. circle(x, y, size, 32, fuzepink, false)
 9. x += xSpeed
 10. if x + size > gwidth() then
 11. xSpeed = -xSpeed
 12. endif
 13. update()
 14. repeat

Alright! Now we’re bouncing properly… But we have another problem. The ball just goes straight
off the other side of the screen!

543

When x becomes too big, the circle goes off the right hand side, but if x becomes too small it goes
off the left!

Before, x was becoming bigger than gwidth(). However, the left side of the screen is 0 pixels. So
our problem is that that x has become less than 0.

There’s a very clever solution to this problem:

 1. x = 640
 2. y = 360
 3. size = 100
 4. xSpeed = 3
 5.
 6. loop
 7. clear()
 8. circle(x, y, size, 32, fuzepink, false)
 9. x += xSpeed
 10. if x + size > gwidth() or x - size < 0 then
 11. xSpeed = -xSpeed
 12. endif
 13. update()
 14. repeat

We can simply add an or to our if statement for this one. The right hand side of the ball is x + size,
but the left side is x - size. So, we check if x - size has become less than 0. If it does, we simply do
the exact same thing as before. We make xSpeed negative.

But xSpeed is already negative! Well, because of the magic of maths, when you make a negative
number negative, it becomes positive. Two wrongs do not make a right, but two negatives do
make a positive!

If xSpeed is positive, xSpeed = -xSpeed makes it negative.

If xSpeed is negative, xSpeed = -xSpeed makes it positive!

This will cause our ball to bounce neatly around the x axis.

Okay, let’s do the same with the y axis to finish this project. Feel free to try for yourself, but check
out the code below if you need help:

 1. x = 640
 2. y = 360
 3. size = 100
 4. xSpeed = 3
 5. ySpeed = 3
 6.
 7. loop
 8. clear()
 9. circle(x, y, size, 32, fuzepink, false)
 10. x += xSpeed
 11. y += ySpeed
 12. if x + size > gwidth() or x - size < 0 then
 13. xSpeed = -xSpeed

544

 14. endif
 15. if y + size > gheight() or y - size < 0 then
 16. ySpeed = -ySpeed
 17. endif
 18. update()
 19. repeat

Make it Awesome!

What we’ve just created are the basics of the game Pong! All we would need now are a couple of
bats and a score. We won’t be adding this to the program here, but check out the demo programs
for a full version of pong to play around with.

What we can do, however, is really make this program more visually exciting.

The first thing we do in the loop is clear() the screen. We must have this to see a clean moving
ball, otherwise we will see all of the previous circles that have been drawn. This actually looks
very cool indeed. Try deleting the clear() line.

 1. x = 640
 2. y = 360
 3. size = 100
 4. xSpeed = 3
 5. ySpeed = 3
 6.
 7. loop
 8. circle(x, y, size, 32, fuzepink, false)
 9. x += xSpeed
 10. y += ySpeed
 11. if x + size > gwidth() or x - size < 0 then
 12. xSpeed = -xSpeed
 13. endif
 14. if y + size > gheight() or y - size < 0 then
 15. ySpeed = -ySpeed
 16. endif
 17. update()
 18. repeat

Now we see a line being drawn all over the screen. Try changing the false in the circle() line to true
to see a big difference.

 8. circle(x, y, size, 32, fuzepink, true)

This will give us an outline of a circle instead.

Try changing the 32 in the circle() line to totally change the shape. See what it looks like with a 3!

 8. circle(x, y, size, 3, fuzepink, true)

Now let’s really step things up.

It would be truly awesome if we could change the colours while we draw the circles for a beautiful
rainbow effect.

545

This next piece of code is going to look quite difficult to understand, and we’re certainly not going
to explain it all in this tutorial as it wouldn’t quite be the right place. However, the end result is so
cool that we thought it would be best to include it here to give you a chance to play.

To achieve the colour changing rainbow effect we are changing the red, green and blue (RGB)
values of a colour vector. Confused? Fear not, you’ll learn all about vectors in the later tutorials.

All of the important settings to change in the program are in the variables at the start of the
program. Change these settings around to see what differences you can make!

Copy the code below into the editor:

 1. // circle properties
 2. x = gwidth() / 2
 3. y = gheight() / 2
 4. radius = 100
 5. sides = 6
 6. outline = false
 7.
 8. // speed variables
 9. xSpeed = 33
 10. ySpeed = 66
 11.
 12. // colour variables
 13. cSpeed = 0.01
 14. col = { 1, 0, 0, 1 }
 15.
 16. loop
 17. if col.r > 0 and col.b <= 0 then
 18. col.r -= cSpeed
 19. col.g += cSpeed
 20. else
 21. if col.g > 0 then
 22. col.g -= cSpeed
 23. col.b += cSpeed
 24. else
 25. col.b -= cSpeed
 26. col.r += cSpeed
 27. endif
 28. endif
 29. circle(x, y, radius, sides, col, outline)
 30. x += xSpeed
 31. y += ySpeed
 32. if x + radius > gwidth() or x - radius < 0 then
 33. xSpeed = -xSpeed
 34. endif
 35. if y + radius > gheight() or y - radius < 0 then
 36. ySpeed = -ySpeed
 37. endif
 38. update()
 39. repeat

546

There we have it! Run this program to see some rainbow patterns appear on screen. Change the
radius, sides and outline variables to experiment with different types of shapes.

Change the xSpeed and ySpeed variables to change the pattern that is drawn.

Change the cSpeed variable to speed up or slow down the colour change effect.

Have fun, and see you in the next tutorial!

Functions and Keywords used in this tutorial

circle(), clear(), gWidth(), gHeight(), loop, repeat, update()

547

Tutorial 5: Arrays

Wow, we’re really powering through! In this tutorial, we will cover arrays. What they are, how to
use them and why we should.

Arrays are incredible and powerful tools for programming. In fact, almost every video game in the
world uses many arrays to keep track of everything it needs.

An array is a table of variables. We can give each position in the table a value and use it later in
the program.

Arrays are used for a huge variety of things, from inventories to maps to putting stars in your
space background, but in this first tutorial we’ll be creating a simple fortune teller game.

A fortune teller needs to have a selection of answers stored so we can randomly choose one to
give the player.

Before we write our selection of answers, we must create our array. To do this, we must use the
word array. Who would have thought?!

Type the following line into the FUZE4 Nintendo Switch code editor:

 1. array answers[4]

This line sets up an empty array. Think of this like an empty chest of drawers. Notice the square
brackets in this line. When we create or access an array, we always use square brackets. Because
we put a 4 in the square brackets, we have 4 places to store things.

We have called our array “answers”. This can of course be anything you like, but as always it’s
good to name our variables and arrays as things which make sense.

Next up, we’re going to store some information in the elements to our array. In each of these
elements, we can store something. We will store a variety of statements.

 1. array answers[4]
 2. answers[0] = "It is certain!"
 3. answers[1] = "It does not look good..."
 4. answers[2] = "You might be in luck!"
 5. answers[3] = "Definitely not."

Edit your code so that it looks like the program above. Feel free to copy and paste the code if you
don’t feel like typing!

The program above now stores the four different text answers we have into the four elements of
our array. These are labeled as element 0, 1, 2 and 3.

The image below might help you picture this in your mind:

548

As you can see, each position in the table is labeled with a number (0 - 3). Because of this, we can
easily access any element and use the information.

There is another way to lay out our array too, and the results are exactly the same. See below:

 1. answers = [
 2. "It is certain!",
 3. "It does not look good...",
 4. "You might be in luck!",
 5. "Definitely not."
 6.]

There is no difference whatsoever in the result. It’s all about which ever you find easiest to
understand!

Below we’ve made a few additions to the program. Add the lines 6 to 19 and run it.

 1. array answers[4]
 2. answers[0] = "It is certain!"
 3. answers[1] = "It does not look good..."
 4. answers[2] = "You might be in luck!"
 5. answers[3] = "Definitely not."
 6. print("Welcome to the fortune teller, ask me a question! \n")
 7. update()
 8. question = input("Type your question here.")
 9. sleep(1)
 10. print("Are you ready to know your fortune? \n")
 11. update()
 12. sleep(1)
 13. print("My answer to your question is... \n")
 14. update()
 15. sleep(1)
 16. num = random(4)
 17. print(answers[num])
 18. update()
 19. sleep(2)

Now we can play! With a couple of sleep commands, we can really ramp up the tension before we
get our answer!

549

Accessing the array

In order to print one of our answers on the screen, we must access the array. Line 17 is where we
do this.

Because we want to print a random answer, we use the random() function to choose a random
number. We can then use this as an index into our array.

We store the random number in a variable called num and use that variable to access the array
on line 17:

 17. print(answers[num])

Challenge

Could you add some more answers to the array? You will need to create additional lines of code to
do this. Try to add 3 more answers.

Hint: Don’t forget to look at this line:

 16. num = random(4)

Re-cap

An array is a table of variables used to store information.

Every position in the table has a number which we can use to access the information stored there.

Arrays are used everywhere! A computer controls a screen using a gigantic array, where each
element of the array is a single pixel.

Stay tuned for the next arrays project in which we will throw some shapes around the screen!

Functions and Keywords used in this tutorial

array, input(), print(), sleep(), update()

550

Tutorial 6: Using Controls

Good to see you again!

In this tutorial, we’ll begin to learn how to use the Joy-Con controllers in our programs.

If we want to start writing something like a game, we’re going to have to use the Joy-Con
controllers sooner or later!

To do this, we’ll need our good old if statements. After all, we are checking if a button is being
pressed!

Here’s how we do it. As always, we start super simple.

Enter the following code into the FUZE4 Nintendo Switch code editor:

 1. loop
 2. clear(black)
 3.
 4. joy = controls(0)
 5.
 6. if joy.a then
 7. print("You are pressing the A Button!")
 8. endif
 9.
 10. update()
 11. repeat

Here’s a nice and simple program to get the idea across. All we want to happen is for the text “You
are pressing the A Button!” to appear when we press the A button.

Notice that this program is all in a loop. We want our program to run continuously. The first thing
we do in our loop is to clear the screen. We have a clear() and an update() function because we
are changing what we want to appear on screen.

Now, onto the important part.

Take a look at line 4. Here we are calling a function called controls(). This function gives us the
current state of all of the controls and this is exactly what we need to use the Joy-Con controllers in
our program.

We store the result of the controls() function in a variable we’ve called joy.

Now that we’ve done this, we can access any of the buttons by using joy.a, joy.b, joy.x and so on.

On line 6 is our if statement which uses the controls data. We check if the A button is being
pressed with if joy.a then.

551

A little more advanced…

It’s important to realise that when a computer checks an if statement, it can only be either true or
false.

When FUZE reads line 6, it checks to see if joy.a is true or false.

If the A button is being pressed, joy.a is true.

If the A button is not being pressed, joy.a is false.

When we write if joy.a then, there is a little something hidden. Really, line 6 reads: if joy.a == true
then

Challenge

Can you add an if statement to this program to check another controller input? You should also
write a line of text to display to the user that a button is being pressed.

Check out the user guide page for the controls() function to see all of the possible inputs for the
Joy-Con controllers. You can find that page just here.

Moving a Ball Using the Control Stick

Remember our screen tutorial? In that project, we learned how to move a circle around the screen
using variables.

What if we wanted to move the circle using the Joy-Con control sticks? It’s actually beautifully
simple.

We’ll need the controls() function. First, let’s remind ourselves of the basic program template.

 1. x = gwidth() / 2
 2. y = gheight() / 2
 3. radius = 100
 4.
 5. loop
 6. clear()
 7. circle(x, y, radius, 32, fuzepink, false)
 8. update()
 9. repeat

We have a simple loop which puts a circle on screen at the x and y variables defined at the start
of the program.

Let’s add the controls() function, and define a variable to use it.

 1. x = gwidth() / 2
 2. y = gheight() / 2
 3. radius = 100
 4.
 5. loop
 6. clear()

552

 7. joy = controls(0)
 8. circle(x, y, radius, 32, fuzepink, false)
 9. update()
 10. repeat

Just like before, we have created a variable called joy to store the result of the controls()
function.

The left control stick is accessed with .lx and .ly for the x and y axes of the control stick.

It’s important to understand exactly how the controls() function works with the control stick.
Take a look at the image below:

As you can see, the value returned by the controls() function which represents the left control
stick is 0 when not being pushed in a direction.

When pushed to any side, the value changes towards either 1 or -1. There are a lot of numbers in
between! Actually, on one axis there are 65000 different positions!

If the .lx value is greater than 0, we know the control stick is being pushed towards a positive
number, and therefore this tells us the control stick is pushed to the right. If the value is less than
0, we know it is being pushed towards a negative number, and therefore is being pushed to the
left.

Let’s modify our code with this new knowledge so we can move in both directions on the x axis.

 1. x = gwidth() / 2
 2. y = gheight() / 2
 3. radius = 100
 4.
 5. loop
 6. clear()
 7. joy = controls(0)
 8. x += joy.lx
 9. circle(x, y, radius, 32, fuzepink, false)
 10. update()
 11. repeat

Look at that! We’ve added just a single line of code.

On line 8, we simply add the value of the left control stick to the x variable. If the control stick is
being pushed to the right, we have a positive number and so the circle moves to the right. If the
control stick is being pushed to the left, we have a negative number and so the circle moves to the
left.

553

Now, because these numbers are very small indeed, our circle will move incredibly slowly. Not
very useful. Let’s introduce a speed variable which we can use as a multiplier. Take a look below:

 1. x = gwidth() / 2
 2. y = gheight() / 2
 3. radius = 100
 4. speed = 8
 5.
 6. loop
 7. clear()
 8. joy = controls(0)
 9. x += joy.lx * speed
 10. circle(x, y, radius, 32, fuzepink, false)
 11. update()
 12. repeat

With this change, we will see a much greater movement effect.

On line 9, we increase the x variable by the left control stick value multiplied by the speed
variable. This gives us 8 times faster movement. Try changing the speed variable to see different
results.

Okay, so let’s move the circle on the y axis too! This one is just slightly more complicated.

 1. x = gwidth() / 2
 2. y = gheight() / 2
 3. radius = 100
 4. speed = 8
 5.
 6. loop
 7. clear()
 8. joy = controls(0)
 9. x += joy.lx * speed
 10. y -= joy.ly * speed
 10. circle(x, y, radius, 32, fuzepink, false)
 11. update()
 12. repeat

Line 10 is our new line. Notice that we use -= instead of += for the y axis. This is because the top of
our screen is 0 on the y axis, but the control stick y axis is positive when being pushed upwards.
Take a look at our control stick image again:

When we move the stick upwards, we receive a positive number. In order to make the circle move
upwards on the screen, we need to decrease the y variable, not increase it. For this reason, we use
-=.

554

Creating Boundaries

All we need now is a few if statements to stop our circle from moving off screen. Just like in the
screen tutorial, we’ll be checking the x and y variables, but instead of reversing direction, we will
be redefining the x and y variables.

We’ll start by stopping the circle at the edges of the x axis.

 1. x = gwidth() / 2
 2. y = gheight() / 2
 3. radius = 100
 4. speed = 8
 5.
 6. loop
 7. clear()
 8. joy = controls(0)
 9. x += joy.lx * speed
 10. y -= joy.ly * speed
 11. if x + radius > gwidth() then
 12. x = gwidth() - radius
 13. endif
 14. if x - radius < 0 then
 15. x = radius
 16. endif
 17. circle(x, y, radius, 32, fuzepink, false)
 18. update()
 19. repeat

Lines 11 to 16 contain our first set of if statements. All we need to do is check whether the edge of
the circle (x + radius) has become greater than the edge of the screen (gwidth()). If it is, we
redefine x to be equal to the edge of the screen minus the radius (x = gwidth() - radius).

We do the same thing but reversed for the left side of the screen. We check if x - radius has become
less than 0, and if it has, we redefine x to be the left side (0) plus the radius of the circle. We can
write this simply as x = radius.

Easy enough! Now let’s do the same for the y axis:

 1. x = gwidth() / 2
 2. y = gheight() / 2
 3. radius = 100
 4. speed = 8
 5.
 6. loop
 7. clear()
 8. joy = controls(0)
 9. x += joy.lx * speed
 10. y -= joy.ly * speed
 11. if x + radius > gwidth() then
 12. x = gwidth() - radius
 13. endif
 14. if x - radius < 0 then

555

 15. x = radius
 16. endif
 17. if y + radius > gheight() then
 18. y = gheight() - radius
 19. endif
 20. if y - radius < 0 then
 21. y = radius
 22. endif
 23. circle(x, y, radius, 32, fuzepink, false)
 24. update()
 25. repeat

There we have it! This type of movement code can be applied to any program. In later tutorials we
will be covering more advanced movement techniques, but just understanding this simple type of
movement will open up a world of experimentation in your own projects!

See you in the next tutorial!

Functions and Keywords used in this tutorial

clear(), controls(), endIf, if, input(), loop, print(), repeat, then, update()

556

Tutorial 7: For Loops

Hello again!

Okay, we know how loops work and we understand variables. Now we can cover another
incredibly useful tool for programming: For loops.

For loops are used all the time in programming. Sometimes used for animations, sometimes just
as a counter, sometimes used to check over a whole array very quickly, For loops are a valuable
and versatile tool.

 1. for i = 0 to 10 loop
 2. print(i)
 3. update()
 3. repeat
 4. sleep(2)

The program above is a counter from 0 to 10. For loops are special because they define a variable
within the loop.

In our example, we are defining a variable called i. The first time this loop goes around, i is equal
to 0. As we know, when FUZE reads the repeat command, it returns to the last loop line. However,
now i is equal to 1. Next time the loop goes around, i is equal to 2. This carries on increasing by 1
each time until we finally get to 9.

When i is equal to 10 the condition is completed and the loop finishes!

Note: The loop counts up to but not including the last value. So our example, for i = 0 to 10 loop
will count from 0 to 9 and will not reach 10.

Using a For Loop to Create Sound

So why might we want to do this? Well, below is quite a cool example of how to use a for loop to
create interesting sounds using our playNote() function. Change your code so it looks like the
program below and run it. Make sure your volume is up!

 1. for i = 0 to 900 loop
 2. playNote(0, 1, i, 1, 10, 0.5)
 3. update()
 4. sleep(0.01)
 5. repeat

Here, we have used our variable i again, but this time we are counting to 900 instead of 10.
Remember, we will never quite reach 900. i will only ever reach 899.

The playNote() function is quite a cool one to get used to because it can be used to create your
own music! playNote() plays a note of a certain frequency (pitch). In this case, our frequency is
determined by the i variable.

557

The first time around, our playNote() will play a frequency of 0hz. The next time around the loop,
the frequency will be 1hz, then 2hz and so on until 899hz. This will give us a sequence of notes in a
loop.

We are also using a sleep() function with a very short delay of 0.01 seconds. With a delay this
short, the notes sound more like a sweep upwards, kind of like an alarm sound or a siren.

What if we wanted to play a more musical sounding series of notes? Well, we’ll need two things: a
longer delay, and something called a step.

We use a step in a for loop to count in specific amounts. Take a look below:

 1. for i = 0 to 900 step 100 loop
 2. playNote(0, 1, i, 1, 10, 0.5)
 3. update()
 4. sleep(0.1)
 5. repeat

In this example, our for loop still counts from 0 to 900, but in jumps of 100 each time. This means
the first cycle of the loop is still 0, but the next is 100, then 200, 300 and so on. However, this time
when the i variable reaches 800 the loop finishes.

We have used a longer delay this time to give us a longer note duration. The result will sound like
a scale moving upwards. Much more musical!

Try using different steps and beginning or end values to get different results!

Using a For Loop with Shapes

Another example of how we can use a For Loop is for animation. Let’s say we wanted to draw a
line one pixel at a time across the screen.

 1. for x = 0 to gwidth() loop
 2. box(x, gheight() / 2, 1, 1, white, false)
 3. update()
 3. repeat

Notice in this example we are naming our variable x. This is because we are using it to change the
x axis position of a pixel. You can of course call your variables whatever you feel like!

Our x variable will count from 0 to the maximum number of pixels along the x axis of the screen.

When we use the box() function, we must put certain pieces of information in the brackets. The
first two pieces are the x and y position of where we want our box to appear on screen. Next up,
we have the width and height of the box. In our example, our box has a width and height of just
one pixel. A very tiny box indeed! The next piece of information is the colour we want our box to
be. Lastly, we say whether we want an outline of a box (true), or a filled in box (false).

For the x position, we are using our increasing number x. For the y coordinate, we are using
gheight() / 2, which gives us the middle point on the y axis of the screen.

In short, this little program will draw a line across the middle of the screen, one pixel at a time.
Watch it in all its glory!

558

Let’s do something a bit more visually exciting than just a line.

Change your code to look like the program below, but see if you can figure out what will happen
before you run the program!

 1. for y = 0 to gheight() loop
 2. circle(random(gwidth()), y, 100, 32, fuzepink, true)
 3. update()
 4. repeat

gheight() as we know is a function which gives us the height of the screen in pixels.

In handheld mode, that number will be 720. In TV mode, that number is 1080.

Depending on how you are using your Nintendo Switch console, you will see either 720 or 1080
circles appear on you screen, one by one, moving down the screen.

Since the x part of the circle() function is a random number chosen out of the total number of
pixels across the width of the screen, our circles will appear in a random position along the x axis
each time a new one is created.

Using a For Loop with an Array

One of the most useful and practical applications of a for loop is using it to cycle through an array
of information.

This technique is used a lot in programming. If we have lots of things to put on screen, chances are
those things are stored in an array and a for loop is used to display them.

Let’s see an example of using a for loop with an array to print lots of different names on the
screen.

First, we’ll need to create an array and populate it with information.

 1. array names[5]
 2. names[0] = "Dave "
 3. names[1] = "Kat "
 4. names[2] = "Luke "
 5. names[3] = "Jon "
 6. names[4] = "Rob "

Before we go any further let’s remind ourselves of what we’ve done. We have created a table of
information. Each part of the table has a number.

Now let’s use a for loop to print the names on screen.

 1. array names[5]
 2. names[0] = "Dave "
 3. names[1] = "Kat "
 4. names[2] = "Luke "
 5. names[3] = "Jon "
 6. names[4] = "Rob "
 7. loop
 8. clear()

559

 9. for i = 0 to 5 loop
 10. print(names[i])
 11. repeat
 12. update()
 13. repeat

We have a for loop on lines 9 to 11. This is used to print all 5 names on the screen. Without using
a for loop, we would need to use 5 different print() lines to achieve what we want.

The clever part of this is that we use our increasing i variable in the print() line. The first time
around the loop, the line reads:

 10. print(names[0])

Next time around, i is equal to 1 so it reads:

 10. print(names[1])

This carries on around and around until we have printed every name from the array.

Recap

A for loop is a loop which repeats a set number of times.

We define a variable in the loop which increases (or decreases) on each repeat.

There are many, many applications for for loops. It’s impossible to cover them all here, since we
must start simple. However, keep your eyes peeled in the upcoming tutorials and the demo
programs in FUZE4 Nintendo Switch to see how else they can be used.

Well done - you’re leveling up! See you in the next tutorial!

Functions and Keywords used in this tutorial

box(), circle(), gWidth(), gHeight(), for, loop, playNote() print(), repeat, sleep(), step

560

Tutorial 8: Functions

Are you feeling funky?

All jokes aside, this is very serious business. Functions are incredibly important tools in
programming and it really feels like a level up when you understand them!

Almost every programming language contains lots of functions already, so if you’re not sure what
they are exactly, the chances are you’ve used them plenty of times without realising!

What is a Function?

A function is like a mini-program which we can use again and again. There are two kinds of
functions. There are built-in functions which already exist, and there are user functions which
we create.

You can spot a function very easily because it will have a pair of brackets () after it. These might
contain information, or they might be empty.

Perhaps the most simple function which we all know and love is print. We use print() all the time
to put words on the screen:

print("like this!")

In the print() brackets we put the information the function needs.

For print(), it’s quite useless unless we tell it what we want to print! So, we must pass our text to
the function.

Arguments

Some functions need more information than just one thing. For example, printAt() needs not only
the text you want to appear, but also the position of that text on the screen:

printAt(0, 0, "message")

The pieces of information in the brackets separated by commas are called arguments. The
printAt() function must have its arguments laid out like this:

printAt(x, y, text)

Our example of printat(0, 0, message) would print the word “message” at x position 0, y position
0.

Are you still with us? Of course you are! Oh, this is easy you say?

Well, let’s go a little bit deeper.

561

A function is really a separate piece of code which a computer has to find and use. When a
computer reads print(“hello!”) it takes our text “hello!” and passes it to the code it must run to
make the words appear on screen.

This is the same for all functions. For example, let’s take the box() function.

box(x, y, width, height, colour, fill)

As you can see, the box function’s arguments are laid out here. The first two numbers in the
brackets are the x and y coordinates for the top left point of the box. Next, the third and fourth
numbers will be used as the width and height of the box. Next up we have the colour of the box
and the last argument tells the box to be filled in or just an outline.

All of these pieces of information are passed to the box function and are used to put a box on
screen!

Empty Brackets

It’s important to mention that not all functions need something passed to them. Sometimes they
just return something. For example, take the gwidth() or gheight() functions.

Notice the empty brackets in gwidth() and gheight(). We do not need to pass any information to
them, but they return a number. That number is the width or height of the screen in pixels.

It might seem a bit strange to have to include empty brackets, but remember, functions always
need brackets, whether they need information or not.

User-defined Functions

Still with us?

All of that was just the beginning!

It’s very common in coding to need to do the same thing multiple times. This is the perfect time for
a user-defined function, which is a fancy way of saying your own custom function.

We can create a custom function to do just about anything. Let’s start nice and simple. We want to
print the word “Hello” on the screen in blue ink and a specific size.

Without our own function, we might have something like this:

 1. textSize(50)
 2. ink(blue)
 3. print("Hello!")
 4. update()

Every time we want to do this, we’ll have to use these same 4 lines again and again. Unless we
create a function to do it!

 1. function fuzePrint()
 2. textSize(50)
 3. print("Hello!")

562

 4. update()
 5. return void

Once we’ve written the above section of code, we can now simply use fuzePrint() and we’ll get the
same result each time.

But we could upgrade this function. Let’s say we wanted to print any text we like, at any size, with
any colour!

By passing some variables to our function, we can do this very easily:

 1. function fuzePrint(text, size, col)
 2. textSize(size)
 3. ink(col)
 4. print(text)
 5. update()
 6. return void

Now our fuzePrint() function has three arguments (pieces of information in the brackets). In our
code, we could now type:

 1. fuzePrint("Hello!", 50, blue)

When we use this function, the information in the brackets is passed to the fuzePrint() function
we created. “Hello!” is stored as a variable called text and used in the print() line. The number 50
is stored as a variable called size and used in the textSize() line, and the colour is stored as a
variable called col and used in the ink() line.

We could now use our new fuzePrint() function again and again in our program, and save
ourselves a lot of hassle!

Return Void

You might have noticed that strange looking line in the fuzePrint() function we just created.

return void

All functions must return something. Even if that something is technically nothing!

At the end of a function you create, you must specify what you would like it to return.

If your function does not need to return anything, simply write the return void line.

Sometimes we want a function to return something calculated in the function itself. For instance,
here’s a custom function which converts metres into centimetres:

 1. function metre2cm(number)
 2. return number * 100

Simply put the name of the variable you’d like to return at the end of the function! You can also
perform operations here, just like the example above.

Try writing some functions of your own.

563

See you in the next tutorial!

Functions and Keywords used in this tutorial

box(), circle(), clear(), controls(), for, gWidth(), gHeight(), loop, random(), repeat, update()

564

Tutorial 9: And, Or, Not

In this tutorial, we’ll dive a little further into *if statements** and what can be done with them.

We know that if we want to check something, we can use an if statement. For example:

 1. dave = true
 2.
 3. if dave then
 4. print("Hurray!")
 5. endif

Nice and simple to start with. We have a variable called dave which we’ve set to true.

Our if statement on line 3 checks to see if the dave variable is true. If it is, we print “Hurray!”.
How fantastic.

Let’s introduce some more complexity. It’s time to talk about two words: and and or

These words are called operators. We can use these operations to check multiple things together
in our if statement.

Check it out.

 1. dave = true
 2. kat = true
 3.
 4. if dave and kat then
 5. print("Hurray!")
 6. else
 7. print("Oh no...")
 8. endif

First of all, we’ve introduced a new variable into the mix. It’s kat!

Now our if statement checks two things. We check if dave is true, and if kat is true. This if
statement will return either true or false, and will only be true if both our variables are true. If we
change either of the variables to false, our if statement will be false and we’ll print “Oh no…”.

The and operation works very similar to the way we use it to speak, it combines things.

Or is a little different, but again it works very similarly to the way we use it to speak. Or checks if
either of the conditions are true.

See if you can predict the difference with the code below:

 1. dave = true
 2. kat = true
 3.

565

 4. if dave or kat then
 5. print("Hurray")
 6. else
 7. print("Oh no...")
 8. endif

If we run this code, we’ll get “Hurray”, because both the dave and kat variables are true, and the if
statement checks if either are true. Even if we change one of them to false, we’ll still get “Hurray”.

For our if statement to give us “Oh no…”, we would have to make both the dave and kat variables
false.

Summary

Before we get into some more practical examples of using and and or, take a look below for a
summary.

Try to think of the and and or operations as things which give you a true or false answer.

And

Take a look at these examples below. No need to type them into your editor as they are unfinished.

The if statement below will give us true

 1. dave = true
 2. kat = true
 3.
 4. if dave and kat then

Here, our if statement gives us false:

 1. dave = false
 2. kat = true
 3.
 4. if dave and kat then

Here, our if statement gives us false:

 1. dave = false
 2. kat = false
 3.
 4. if dave and kat then

Or

The if statement below will give us true:

 1. dave = true
 2. kat = true
 3.
 4. if dave or kat then

Here, our if statement gives us true:

566

 1. dave = false
 2. kat = true
 3.
 4. if dave or kat then

Here, our if statement gives us false:

 1. dave = false
 2. kat = false
 3.
 4. if dave or kat then

Not

There is also another star player here… But for some reason they’re not here…

That’s right, it’s not!

This is getting confusing…

not does exactly what you’d think it does. It checks if something is not true. We can use the !
symbol to use not, but it’s also fine to use the word!

Let’s see an example of not in our Dave and Kat program.

 1. dave = false
 2. kat = false
 3.
 4. if not dave == true or not kat == true then

This if statement will give us true, because we are checking to see if either dave or kat is false
(not true).

To write this using the ! symbol, the syntax is a little different, spot the difference:

 1. dave = false
 2. kat = false
 3.
 4. if dave != true or kat != true then

See how we must put the ! just before the = sign? Think of this as saying “not equal to”.

We can also write this another way, even more efficiently!

 1. dave = false
 2. kat = false
 3.
 4. if !dave or !kat then

Either of these ways of writing your code is perfectly fine, it’s up to you to choose which you
prefer!

567

Using And, Or and Not

Okay! Let’s see a couple of examples where this might be really useful for a game project.

When we want to check the buttons on the Joy-Con’s, we use if statements to check which
buttons are being pressed. Here, and and or can help very much.

Let’s say we want something to happen only if we are moving and pressing the A button.

 1. loop
 2. clear()
 3.
 4. j = controls(0)
 5.
 6. if j.lx != 0 and j.a then
 7. print("Hurray!")
 8. endif
 9.
 10. update()
 11. repeat

As you can see we have a simple loop. We clear the screen at the very start, and update the screen
at the very end.

Line 4 uses the controls() function which tells us the current state of all the controls. The result is
stored in a variable called j.

Our if statement checks if the Joy-Con left control stick (lx) is being pushed in any direction j.lx !=
0. If the control stick value is 0 it’s totally still and right in the middle!

We also check if the A button is being pressed with joy.a = true.

Because of the and between these two checks, both must be true before our if statement becomes
true.

Let’s see an example using or.

 1. loop
 2. clear()
 3.
 4. joy = controls(0)
 5.
 6. if joy.zl or joy.zr then
 7. print("Hurray!")
 8. endif
 9.
 10. update()
 11. repeat

This time we’re checking for different buttons. We are now checking if either the left shoulder
button joy.zl or the right shoulder button joy.zr become pressed.

This way, we could make the same thing happen for two different button presses.

568

Finally, let’s see an example using not.

This time, we’ll make it so that “Hurray” appears only when the button isn’t being pressed.

 1. loop
 2. clear()
 3.
 4. j = controls(0)
 5.
 6. if !j.zl or !j.zr then
 7. print("Hurray!")
 8. endif
 9.
 10. update()
 11. repeat

We’ve only added the ! symbols to our code, and now the result is totally different!

We are now checking if the shoulder buttons are false. While they are false, “Yahoo!” appears on
the screen, but as soon as one becomes pressed and becomes true, our if statement is false and
we do not see “Hurray!”.

Re-cap

and, or and not are called operators. They perform an operation.

We mainly use them in if statements to make them capable of checking more complex things.

They are particularly useful when using the controls(0) function.

Imagine we want a character in a game to be able to perform a jumping attack. We will need and in
this situation because we are checking if the character is jumping and if the attack button is
pressed.

See you in the next tutorial!

Functions and Keywords used in this tutorial

and, clear(), controls(), else, endIf, if, loop, not, or, print(), repeat, then, update()

569

Tutorial 10: Variables Extended

In this tutorial we’ll be covering some of the more advanced properties of variables, what words
like “Global” and “Local” mean and a concept called scope.

So far we know that we can use a variable to store a piece of information. This can be anything at
all: we can store a number in a variable, we can store a piece of text (a string), we can store the
result of a function, we can even store multiple pieces of information in a type of variable called
an array.

This is all wonderful information. However, we’re missing something a little important for more
advanced programs.

Every variable in a program has something called scope. There are two levels of scope, global
and local. The scope of a variable determines which parts of a program can access it.

Global variables can be accessed from anywhere in the program. Local variables can only be
accessed from areas of the program with the same scope.

Confused?

Let’s take a look at an example:

 1. a = 10
 2.
 3. loop
 4. clear()
 5. print(a + modifier(a))
 6. update()
 7. repeat
 8.
 9. function modifier(number)
 10. number += a
 11. return number

Here we have a very simple program which adds two numbers together.

The variable at the top of the program, a is global. Once we’ve defined it at the top of our
program, we can use it anywhere we like. In the example we have demonstrated this by using the
a variable both in our main loop and in our user-defined function called modifier().

The second variable in our program, number is local to the modifier() function. Because it was
defined in our custom function, we can only access it within that function.

570

Data Types

When storing a piece of data in a variable in FUZE4 Nintendo Switch, most of the time you do not
need to specify what type of data that will be. For example, let’s say we want to store a whole
number:

 1. a = 10

There we go! Nothing more required. Let’s say we want to store a string instead:

 1. a = "Dave"

Done! What about storing an array inside our variable?

 1. a = [0, 1, 2, 3]

Simple as that! How about storing a structure?

 1. a = [.name = "Dave", .age = 27, .interests = "Music"]

“What about a vector?!” We hear you scream. If you don’t know what a vector is, fear not! We’ll be
covering that in the upcoming tutorials.

 1. a = { 0, 0, 0, 0 }

Simple as can be. We do not need to define what type of data will be in a variable to store it.

However, in FUZE4 Nintendo Switch, there is one particular time where we must define the type
of data.

There is a different way to create a structure, by creating something called a “structure type”:

 1. struct person_type
 2. string name
 3. int age
 4. array interests[3]
 5. endstruct
 6.
 7. person_type person[10]

The example above defines a structure type called person_type, which describes three properties.

Line 7 creates an array of structures called person. It has 10 elements, and each element now
contains a structure with three properties, a string variable called name, an int variable called
age and an array variable called interests with 3 elements.

When defining a structure using a structure type like the example above, we must define what
type of data each property will be. If we do not do this, we will get an error.

This way of creating structures can be very useful for larger programs, where you might need to
use a certain type of structure in multiple places in your code.

Functions and Keywords Used in this Tutorial

array, clear(), endStruct, function, int, loop, print(), repeat, return, string, struct, update()

571

572

Tutorial 11: Loading and Drawing an Image

Hello there! Great to see you again.

In this tutorial we’ll be going over the basics of loading images from the FUZE4 Nintendo Switch
media browser and drawing them to the screen using the built-in functions.

We’ll also do some diving into what can be done to scale, warp and rotate an image for some
customisation!

When using an image from the FUZE4 Nintendo Switch media, we must first load the image and
assign it to a variable.

To do this, we use the loadImage function:

 1. img = loadImage()

In FUZE4 Nintendo Switch, when you type the loadImage() function and put the cursor in the
brackets, you’ll notice a glowing outline around the “media” key on the on-screen keyboard. Click
this to be taken to the media browser.

In the media browser you can select an asset you’d like to use and FUZE will let you paste the
filename, in speech marks, into your code.

We’ve chosen an image for now from the artist Selavi.

 1. img = loadImage("Selavi Games/JapaneseSetting", false)

Notice the false in the loadImage() arguments. This argument tells FUZE whether or not to apply a
filter to the image. We do not want a filter here, so we put a false.

Alright we now have the image file saved into a variable called img (short for image!). We can
now use this variable in many other functions.

Let’s start by simply drawing our image to the screen. We’ll need the standard clear() and
update() loop we all know and love!

 1. img = loadImage("Selavi Games/JapaneseSetting", false)
 2.
 3. loop
 4. clear()
 5.
 6. update()
 7. repeat

All we need now is to add the drawImage() function!

 1. img = loadImage("Selavi Games/JapaneseSetting", false)
 2.

573

 3. loop
 4. clear()
 5.
 6. drawImage(img, 0, 0, 1)
 7.
 8. update()
 9. repeat

Run the program to see the image displayed very nicely on screen. Lovely!

drawImage()

Let’s take a look at that function in more detail and see exactly what’s going on.

The first argument in the brackets is the variable we’ve stored the image file in. Easy!

The next two arguments are the x and y screen positions you’d like to draw the image to. 0, 0 is
the very top left corner of the screen.

The last argument is the scale multiplier. This number is used to multiply the dimensions of the
image when we draw it on screen.

We’ve used a 1 here to put the image on screen in its actual size. Let’s change that to something
smaller:

 1. img = loadImage("Selavi Games/JapaneseSetting", false)
 2.
 3. loop
 4. clear()
 5.
 6. drawImage(img, 0, 0, 0.1)
 7.
 8. update()
 9. repeat

With a scale of 0.1 we are making the image ten times smaller.

Let’s get a little fancier and use the more complicated drawImage() function to manipulate the
image.

drawImageEx

Rather than using the regular drawImage function, by using drawImageEx we get access to far
more control over the image. There are a few more arguments needed for this function, take a
look below:

 1. img = loadImage("Selavi Games/JapaneseSetting", false)
 2. xPos = gwidth() / 2
 3. yPos = gheight() / 2
 4. rotation = 0
 5. wScale = 0.7
 6. hScale = 0.7
 7. r = 1
 8. g = 1
 9. b = 1

574

 10. a = 1
 11. originX = 0
 12. originY = 0
 13.
 14. loop
 15. clear()
 16.
 17. drawImageEx(img, xPos, yPos, rotation, wScale, hScale, r, g, b, a, originX, originY)
 18.
 19. update()
 20. repeat

Wow, would you take a look at all those arguments! By using drawImageEx() we can control
almost everything about the image.

To make the function a little clearer, we’ve used variables at the top of the program to show
exactly what each argument is doing, laid out in the same order they appear in the function itself.

The first three arguments are ones we’re already familiar with. As we know, img is the variable
which stores the image file. The next two arguments, xPos and yPos, are the x and y positions of
where we want the image to be drawn.

Rotation

The next argument is where things get a little more interesting! This argument controls the
rotation angle of the image. At the moment, the rotation variable is a 0. If we were to make this
180, the image would flip upside-down.

Scale

The next two arguments are the width and height scale of the image. With both of these arguments
as 1, the image will be drawn at its regular scale. Changing these numbers will give the effect of
stretching the image. For example, changing the hScale variable to 0.5 will make the image twice
as wide as it is tall.

RGBA

The next arguments are very cool indeed! We have separate values here for the red, blue, green
and alpha elements of the image. Try changing the r, g and b variables to 0, 0 and 1 for a red
tinted image. Try any numbers you like between 0 and 1 to make your own tint!

Origin

This one is a little strange to get the old head around. The origin point of an image is where the
image is drawn from. By default, the origin is set to 0 on both the x and y axes. Remember, when
we talk about the screen, (0, 0) refers to the top left corner. However, when it comes to images (0,
0) is the middle of the image. Take a look at the image below:

575

With an image origin of (0, 0) and an x and y position of (gwidth() / 2, gheight() / 2), our image
will be printed right in the middle of the screen.

What happens if we change the origin, but keep the x and y positions the same?

If we set the x origin to be minus half the width of the image, but keep the x and y location of the
image the same, our origin is now on the very leftmost side of the image, and the image will be
drawn from that point on the screen.

Manipulating an Image in a Program

Let’s adjust the code a little to make interesting use of these features. First, we’ll rotate the image
during the loop:

 1. img = loadImage("Selavi Games/JapaneseSetting", false)
 2. xPos = gwidth() / 2
 3. yPos = gheight() / 2
 4. rotation = 0
 5. wScale = 0.7
 6. hScale = 0.7
 7. r = 1
 8. g = 1
 9. b = 1
 10. a = 1
 11. originX = 0

576

 12. originY = 0
 13.
 14. loop
 15. clear()
 16.
 17. drawImageEx(img, xPos, yPos, rotation, wScale, hScale, r, g, b, a, originX, originY)
 18.
 19. rotation += 1
 20.
 21. update()
 22. repeat

Run the program to see the image spinning on screen.

Notice that the image is rotating around the origin. If we were to change the origin, we also
change the point of rotation. Let’s give that a try:

 1. img = loadImage("Selavi Games/JapaneseSetting", false)
 2. xPos = gwidth() / 2
 3. yPos = gheight() / 2
 4. rotation = 0
 5. wScale = 0.7
 6. hScale = 0.7
 7. r = 1
 8. g = 1
 9. b = 1
 10. a = 1
 11. originX = 800
 12. originY = 300
 13.
 14. loop
 15. clear()
 16.
 17. drawImageEx(img, xPos, yPos, rotation, wScale, hScale, r, g, b, a, originX, originY)
 18.
 19. rotation += 1
 20.
 21. update()
 22. repeat

All we have done is changed the value of the originX and originY variables to 800 and 300
respectively. Run the program to see that our rotation looks very different!

Alright. Enough spinning around. By manipulating the red, green, blue and alpha values we can
control the lighting of the image in a very convincing way:

 1. img = loadImage("Selavi Games/JapaneseSetting", false)
 2. xPos = gwidth() / 2
 3. yPos = gheight() / 2
 4. rotation = 0
 5. wScale = 0.7
 6. hScale = 0.7
 7. r = 1
 8. g = 1
 9. b = 1
 10. a = 1
 11. originX = 0
 12. originY = 0
 13.
 14. loop
 15. clear()
 16. j = controls(0)

577

 17.
 18. a += j.ly / 50
 19. g += j.ly / 50
 20. r += j.ly / 50
 21.
 22. if r < 0 then r = 0 endif
 23. if g < 0 then g = 0 endif
 18.
 19. drawImageEx(img, xPos, yPos, rotation, wScale, hScale, r, g, b, a, originX, originY)
 20.
 21. update()
 22. repeat

Run the program and move the left control stick up and down to control the lighting. Moving the
control stick down makes the image darker and more blue, whereas moving the control stick
upward will make the image brighter. We’ve also changed our origin back to (0, 0) in this example.

The new lines added are from 16 to 23. First, we call the controls() function to access the Joy-Con
controllers. We are using a variable called j to store the state of the controls.

On lines 18 to 20 we use the left control stick to change the values of the a, g and b variables. The
a variable stores the alpha value (the transparency of the image). If we reduce this value we
make the image darker and increasing it makes the image lighter. Since the control stick value can
be either positive or negative we simply need to add the result to the variable.

We do the same with the r and g variables to control the amount of red and green in our image. As
we move the control stick down the red and green leaves the image, leaving us with just blue. This
happens as the transparency increases, allowing us to see more of the black screen behind the
image. This gives us a lovely dark blue effect.

This sort of technique would be perfect for a game with lots of dialogue between characters.

Why not try changing the background image and creating different lighting effects?

See you in the next tutorial!

Functions and Keywords used in this tutorial

clear(), drawImage(), drawImageEx(), else, endIf, gWidth(), gHeight(), if, loadImage(), loop,
repeat, then, update()

578

Tutorial 12: Structures

Welcome back! Get your thinking hats on for this tutorial - we’ll be looking at a slightly more
advanced concept.

This project will be covering structures. What a structure is, how we can use one in our
programs, and a couple of examples.

Structures are incredibly useful tools for programming, and they make reading code much easier.

What is a Structure?

A structure is a lot like an array. We use it to store information.

Where an array uses a number to access a piece of information, a structure uses a name.

We might use one to store all the information for a player character in a side-scrolling style game.
A player character might have a position on screen, a health value, a speed, an attack and defense
value, etc. All of this information could be stored in a structure which would make it very easy
and convenient to access.

Let’s take a step back, and create a very simple structure which stores some information about a
person. Copy the code below into the FUZE4 Nintendo Switch code editor. Of course, feel free to
change the information!

 1. person = [
 2. .name = "Luke ",
 3. .likes = "Chocolate",
 4. .dislikes = "Vegetables",
 5. .skills = "Coding"
 6.]

There we have it. This program simply sets up a structure we can use. We could access any of this
information with something like: print(person.name) or print(person.dislikes). Simple enough!

Formatting

Let’s quickly address the strange way this code is laid out. To somebody new to coding, this may
look quite strange.

The important parts are the square brackets and commas. First, we name the strcture. We have
called ours person. Then, we open square brackets to begin the structure, and define the
properties we would like it to have. Each of these properties must be separated by a comma.
Finally, we close the square brackets to finish the structure.

It’s very important to realise that this is not the only way to lay out a structure. You might want to
do it like this:

579

 1. person = [.name = "Luke ",
 2. .likes = "Chocolate",
 3. .dislikes = "Vegetables",
 4. .skills = "Coding"]

Which would work exactly the same. You could even write it all on one line, like this:

 1. person = [.name = "Luke ", .likes = "Chocolate", .dislikes = "Vegetables", .skills = "Coding"]

As mentioned before, the important parts are the square brackets and commas. It’s up to you how
you want to lay out your code in FUZE4 Nintendo Switch.

Creating an Array of Structures

This is all well and good, but what if you want to store the information for multiple people?

Here we might use an array of structures. This is simply an array, where each element of the array
is a structure itself. Take a look below, we’ve added someone new to the program:

 1. person = [
 2. [
 3. .name = "Luke",
 4. .likes = "Chocolate",
 5. .dislikes = "Vegetables",
 6. .skills = "Coding"
 7.],
 8. [
 9. .name = "Colin",
 10. .likes = "Trains",
 11. .dislikes = "Brussels Sprouts",
 12. .skills = "Dancing"
 13.]
 14.]

Now we have something a little more complicated. Try not to be put off by the square brackets!

Our first line no longer creates a structure called person. Now it creates an array called person
with two elements. Each of these elements is a structure, just like the single structure before.

The first structure is stored in person[0] and the second in person[1].

Let’s say we wanted to print Colin’s likes. We would do that with print(person[1].likes). Let’s say
we wanted to print Luke’s name. We could do that with print(person[0].name).

Using an array of structures gives us a convenient and powerful method of storing information to
use in our programs. With a combination of structures, arrays and for loops, you can achieve
some incredible things.

Using a Structure in a simple Game

For the main part of this tutorial, we’ll use an array of structures to make a simple racing game,
where 3 shapes will race across the screen. It’s up to us to guess who might win!

580

We will use three shapes, a triangle, a circle and a pentagon. Each one needs a name, an x and y
position, a number of sides (more on this later), a colour and a speed to move across the screen.

Our speed will be a randomly chosen number out of 50. This way, every time we run the program
we’ll get a different outcome!

Let’s build the structure first. This will be quite a lot of code, so it’s recommended to copy and
paste this into the FUZE4 Nintendo Switch code editor.

 1. shapes = [
 2. [
 3. .name = "Triangle",
 4. .x = 0,
 5. .y = gheight() / 2 - gheight() / 3,
 6. .sides = 3,
 7. .col = red,
 8. .speed = random(50)
 9.],
 10. [
 11. .name = "Circle",
 12. .x = 0,
 13. .y = gheight() / 2,
 14. .sides = 32,
 15. .col = green,
 16. .speed = random(50)
 17.],
 18. [
 19. .name = "Pentagon",
 20. .x = 0,
 21. .y = gheight() / 2 + gheight() / 3,
 22. .sides = 5,
 23. .col = blue,
 24. .speed = random(50)
 25.]
 26.]

Phew! There we go. Take a good look at this array of structures. We created an array called
shapes with 3 elements. Each of these elements is a structure with 6 properties.

Just like before in our person examples, we could access any of these with a statement like print(
shapes[1].name), for example.

Let’s now add the code which uses this information. We’ll need a loop to animate the screen, and a
for loop to count over our array of shapes.

 28. loop
 29. clear()
 30. for i = 0 to len(shapes) loop
 31. circle(shapes[i].x, shapes[i].y, 100, shapes[i].sides, shapes[i].col, false)
 32. repeat
 33. update()
 34. repeat

581

Here’s where the usefulness of our array of structures really shines. Lines 30 to 32 create a for
loop which repeats 3 times. We create a variable called i which increases from 0 to 1, to 2.

Notice we are using the len() function to give us the length of an array. Our array is 3 elements, so
this gives us a 3.

This i variable is used as an index into the shapes array to draw a circle on the screen for each
shape, at the x and y positions stored in the structure. Because of the way the circle() function
works in FUZE4 Nintendo Switch, we can just change the number of sides and create a different
shape! This is why we store the number of sides as a property of the structure.

Once the for loop is complete, we update() the screen, and repeat the loop.

Now let’s move them across the screen!

By adding one more line of code into the for loop, we can move each shape:

 28. loop
 29. clear()
 30. for i = 0 to len(shapes) loop
 31. shapes[i].x += shapes[i].speed
 32. circle(shapes[i].x, shapes[i].y, 100, shapes[i].sides, shapes[i].col, false)
 33. repeat
 34. update()
 35. repeat

Line 31 now increases the x position of each shape by that shape’s speed. Run the program to see
all the shapes move at different speeds!

All that’s left is to create a victory screen when a shape wins the race!

This is the perfect time to create our own function! We can pass the name and colour of the
winning shape to our function and use that information in a victory screen. Enter the code below
at the bottom of the program, after the repeat on line 35.

 37. function victoryScreen(name, col)
 38. text = name + " Wins!"
 39. tsize = 100
 40. textSize(tSize)
 41. loop
 42. clear()
 43. drawText(gwidth() / 2 - textWidth(text) / 2, gheight() / 2, tSize, col, text)
 44. update()
 45. repeat
 46. return void

Here we have our user-defined function. This is a section of code which will run when we call the
function.

The purpose of this function is to print the name of the winning shape in the correct colour on the
screen. For that, we need two pieces of information. The name and colour of the winning shape!

In the first line, we name the function as victoryScreen() and give it two arguments. The first
argument is stored in a variable called name and the second is stored in a variable called col. We
can now use these variables in our function.

582

First we define a new variable called text. This will store the entire line of text we want to print.
We take the name variable from our function’s arguments and add it to the text “Wins!”. This text
variable will be very useful when making our text appear in the right place on screen.

Next up we define a variable to store the size of the text. Doing this allows us to get the position of
the text on screen perfect.

On line 40 we use the textSize() function to set the size of the text with our tSize variable.

Now on to the main part of our victory screen, the loop. We need a loop because we want our
screen to display the text until the program is stopped. Of course, we’ll need a clear() and an
update() because we want to display something on screen.

The main instruction in our loop is the drawText() function which we use to display text on
screen with more details than a simple print(). We can position the text by pixels, set a size for the
text and even a colour.

As you can see, the x position of the drawText() function looks a little strange:

 43. drawText(gwidth() / 2 - textWidth(text) / 2

We want the text to be exactly in the centre of the screen, no matter how long the text is. If we
positioned our text at a fixed set of coordinates, we would get very different results if the console
was in TV or handheld mode. We would also get different results depending on which shape won,
because we get a longer or shorter victory message depending on the winning shape.

Due to these reasons, we must use adjust the position based on the length of our text. This is
where our text variable comes in!

We use the textWidth() function to give us the width of a piece of text in pixels. We can then
divide this number by two to give us half the length. If we subtract this from the middle of the
screen (gwidth() / 2) we will always have our text perfectly in the middle of the screen!

It seems like a lot of trouble, but this is a very useful technique for positioning text! Be sure to
remember it for your other projects!

Alright. That’s our user-defined function completed. We end the function with return void
because we do not need to return anything here.

All that’s left is to actually call the function in the main loop!

Adjust the main loop to look like the one below. We’re just adding a simple if statement to check
if a shape has reached the finish line.

 28. loop
 29. clear()
 30. for i = 0 to len(shapes) loop
 31. shapes[i].x += shapes[i].speed
 32. if shapes[i].x > gwidth() then
 33. victoryScreen(shapes[i].name, shapes[i].col)
 34. endif
 35. circle(shapes[i].x, shapes[i].y, 100, shapes[i].sides, shapes[i].col, false)
 36. repeat

583

 37. update()
 38. repeat

Lines 32 to 34 contain our if statement. We simply check if the current shape in the for loop has
reached the edge of the screen. If it has, we call the victoryScreen() function and pass it the
current shape’s name and colour as arguments.

That’s it! Have fun with this one! Perhaps you could add a couple more shapes to the race?
Because of how our main game is written, to achieve this you would only need to add more shapes
to the array!

Recap

A structure is a tool for storing data. It is very similar to an array, except each element has a
name rather than a number. You can freely mix and match these techniques for the task at hand.
You can store arrays within structures, and store structures within arrays!

Try setting up your own and accessing the values to really get your head around how they work!

As always, well done for making it this far and see you in the next tutorial!

Functions and Keywords used in this tutorial

else, endIf, circle(), clear(), drawText(), for, if, loop, repeat, textSize(), then, update()

584

Tutorial 13: Making Music

Musical? If not, you soon will be! In this tutorial we will be using the playNote() function to create
our very own music.

We have taken a very brief look at playNote() before, during the for loops tutorial project. In this
project we will going into much more detail.

playNote()

Let’s take a quick look at the function and break down the arguments:

playNote(channel, waveType, frequency, volume, speed, pan)

The channel argument tells FUZE which audio channel to play our desired note on. There are 16
channels to use, giving us up to 16 sounds playing at the same time, these could be single notes,
music tracks or sound effects.

The frequency argument is the frequency of the note we want to play. Another word for
frequency is pitch. The higher the frequency, the higher the pith of the note.

Frequency is measured in something called Hertz (hz). This means cycles per second. If your
eardrum vibrates at 440hz (a rate of 440 times a second), you will hear the note A! Humans can
hear sounds from around 20hz to 20000hz. Anything outside of this range will not be audible to
us.

The waveType argument is the type of waveform we want to use to play the note. There are 5
different types to choose from in FUZE each with a number: Square (0), sawtooth (1), triangle (2),
sine (3) and noise (4). Each of these waveforms has a very different sound to our ears. Check them
all out!

The volume argument is simply the loudness of the note. This value should be between 0 and 1,
but can be pushed higher if desired.

The speed argument describes the envelope shape of the note. This one’s a little tricky to imagine.
A low number in the speed argument will result in a longer note duration. A higher number will
result in a shorter note duration.

Finally, the pan argument is the stereo position of the sound. Your Nintendo Switch console has
two speaker channels, a left and a right. This number is the position of the sound between these
channels. A value of 0.5 is right in the centre. A number closer to 0 will result in the sound moving
to the left whereas a number closer to 1 will result in the sound moving further to the right.

A Quick Example

Let’s plug some values into this function to make a sound play:

585

 1. playNote(0, 3, 432, 1, 0.5, 0.5)
 2. loop
 3. clear()
 4. update()
 5. repeat

Here we have a small program which plays a note then enters a loop. Notice that the playNote()
line is not in the loop because we only want it to happen once. Our note will ring out for a few
seconds before fading out.

Try changing these values to get different results.

note2Freq()

In FUZE we have a very clever function called note2Freq(). When making music we don’t tend to
think about things in terms of frequency, but rather in terms of the note name. For example, the
note A above middle C (also known as A4) is found at the frequency of 440hz. If we were telling a
musician how to play a melody, we wouldn’t list the frequencies!

Some time ago, a very clever chap called Dave Smith invented a way of sending data to electronic
instruments to tell them which notes to play. This is called MIDI (Musical Instrument Digital
Interface). In MIDI, there are 128 notes to choose from, each with a number. The note A4 we
mentioned earlier is actually the number 69.

note2Freq() receives one of these MIDI note numbers and converts it into the correct frequency
number. This allows us to do some very helpful things when making music!

Start an empty project before moving on to this next part!

Creating an Array of Notes

If we want to use the names of notes to write music, we’ll need to store the MIDI note numbers
into an array. We can use a structure to do this, giving each piece of data a helpful name:

 1. n = [
 2. .c = 60,
 3. .cs = 61,
 4. .d = 62,
 5. .ds = 63,
 6. .e = 64,
 7. .f = 65,
 8. .fs = 66,
 9. .g = 67,
 10. .gs = 68,
 11. .a = 69,
 12. .as = 70,
 13. .b = 71
 14.]

There we are. Now we have each note we would want to play stored in the properties of a
structure called n for note. We can now use something like n.d to get the note D for example.

586

The notes with a letter “s” after them are the in-between notes called “sharps”. We could also call
these “flats”, but their note would have to change. C sharp is the same pitch as D flat, but for the
sake of simplicity we’ve stuck with just sharps.

So now we have a 12 note scale with all the in-between notes. This is called the chromatic scale
and with is we can compose pretty much anything we like!

Before we compose a melody, we’ll need a couple more variables. Notes have not only a pitch, but
a length too. There are specific names for the length values of notes in music terms, we’ll be using
4 of them: Semiquavers, quavers, crotchets and minims:

 16. semiquaver = 0.25
 17. quaver = 0.5
 18. crotchet = 1
 19. minim = 2

Here we are creating some variables to store the length values of each note type we will use.
These are relative to one “beat” - a crotchet is one beat, a quaver is half the length of a crotchet
(0.5), and a semiquaver is half the length of a quaver (0.25).

Now let’s use these variables to compose a small melody, storing the data for each note we want to
play in an array:

 21. melody = [
 22. [.note = n.d, .spd = 40, .l = quaver],
 23. [.note = n.e, .spd = 40, .l = quaver],
 24. [.note = n.f, .spd = 40, .l = quaver],
 25. [.note = n.g, .spd = 40, .l = quaver],
 26. [.note = n.e, .spd = 20, .l = crotchet],
 27. [.note = n.c, .spd = 40, .l = quaver],
 28. [.note = n.d, .spd = 20, .l = minim * 4]
 29.]

Here’s our melody! As you can see, we create an array called melody which stores 7 structures.
Each structure is a note in our melody, giving us a total of 7 notes. Each note has a .note value
which stores the reference into our notes structure, a .spd value which will store the speed value
for the playNote() function and finally a .l value which stores the note length.

Using this format you could write a piece of music very easily! Even if it is quite a bit of typing…

Before we go ahead with playing sound, we must first convert these note length values into real
time values. The note length value tells us how long the note should be, not when in time the note
should start. There is a clever way of doing this using a for loop:

 31. endTime = 0
 32. counter = 0
 33.
 34. for i = 0 to len(melody) loop
 35. temp = melody[i].l
 36. melody[i].l = counter
 37. counter += temp
 38. repeat

587

 39.
 40. endTime = counter

First we create two variables. endTime will eventually store the ending time of the whole melody.
counter will be used to keep track of the note times during the for loop.

Our for loop counts from 0 to the length of the melody array using an i variable. For each note in
the melody, we store that note’s length value in a variable called temp. We then set that note’s
length value to be equal to the counter variable. Since counter begins at 0, the first note length
value becomes 0. Perfect! We want our first note to happen instantly.

We then increase the counter variable by the number held in the temp variable, giving us a new
point in time which the next note should begin at. This process happens for each note in the
melody, converting each note’s length value into a correct start time value.

When the for loop is completed, our counter variable now stores the correct end time for the
melody, so we assign the value of counter to the endTime variable.

We just need a couple more variables before starting the main loop in which the melody will
play.

 42. noteCount = 0
 43. timer = 0

These two variables are important. noteCount will be used as the index into the melody array to
play each note in sequence. timer is a variable which will keep track of the amount of time which
has passed. We will use the timer variable as a trigger to tell FUZE when to move on to the next
note in the melody array.

Playing the Melody

Alright, let’s put all of this to use:

 45. loop
 46. clear()
 47.
 48. if noteCount < len(melody) then
 49. if timer >= melody[noteCount].l then
 50. note = note2Freq(melody[noteCount].note)
 51. speed = melody[noteCount].spd
 52. playNote(0, 3, note, 1, speed, 0.5)
 53. noteCount += 1
 54. endif
 55. endif
 56.
 57. timer += (120 / 60) / 60
 58.
 59. if timer >= endTime then
 60. stopChannel(0)
 61. endif
 62.

588

 63. update()
 64. repeat

Run the program once you’ve completed the code to hear the melody in all its glory. Jazzy!

In this loop we have a couple of clever if statements. Before we look at those, take a look at line
57:

 57. timer += (120 / 60) / 60

This line of code is the part responsible for keeping time. The speed of a piece of music is called
the tempo. This is measured in beats per minute, or BPM. Our melody is being played at 120 beats
per minute.

Our loop is cycling 60 times per second, with the update() function happening once each time.

To get the tempo right, we must figure out not how many beats per minute must take place, but
how many beats per frame.

To achieve this, we take the beats per minute (120) and divide it by 60 to give us the number of
beats per second (120 / 60). We then divide that by the 60 frames happening in one second to give
us beats per frame.

All of this means that our timer is now increasing at a rate that will give us 120 beats per minute at
60 frames per second. Clever!

Now let’s take a look at the if statements:

 48. if noteCount < len(melody) then
 49. if timer >= melody[noteCount].l then
 50. note = note2Freq(melody[noteCount].note)
 51. speed = melody[noteCount].spd
 52. playNote(0, 3, note, 1, speed, 0.5)
 53. noteCount += 1
 54. endif
 55. endif

First we check if the noteCount variable is less than the length of the melody. Next, we check if the
timer variable has reached the start time of the current note in the melody.

If both of these conditions are true, we set a couple of local variables to make our playNote() line
much easier to read. The note variable stores the frequency value of the note, calculated using the
note2Freq() function we talked about earlier.

The speed variable stores the .spd value from the melody array.

We then use the playNote() function to play the desired note using a nice soft sine wave on
channel 0 with max volume and a central stereo position.

Before we finish the if statement, we increase the value of noteCount to ensure that we play the
next note in the sequence.

That’s it!

589

Try changing the melody, adding your own notes, changing the timings and changing the beats per
minute. There’s nothing to get wrong here! It’s all groovy!

Actually, before you do, let’s apply a little reverb to this melody to really make it sound sweeter:

 44. setReverb(0, 8000, 0.5)

Just before the start of the loop, add the line above to your program. This function sets an amount
of reverberation, or echo, to a channel.

The first number in the brackets is a 0 for the channel. Since our melody is played using channel 0,
we must make this a 0 to hear any effect!

The next number is the amount of miliseconds before we hear an echo.

The last number is the multiplier applied to the volume of the echo over time. A low number hear
will cause a fast volume reduction, whereas a higher number will result in a slower volume
reduction. This number can be between 0 and 1.

Now run the program and we should hear quite a difference!

Go ahead and make your own tunes!

Making Your Melody Loop

The program we have written will only play the melody once and then stop all sound from the
channel:

 59. if timer >= endTime then
 60. stopChannel(0)
 61. endif

With this if statement we check if the timer variable has reached the value stored in the endTime
variable. If it has, we issue a stopChannel() command to cease all sound from the channel. If we
wanted our melody to loop, we could change this to the following:

 59. if timer >= endTime then
 60. noteCount = 0
 61. timer = 0
 62. endif

Now when our timer reaches endTime, instead the timer and noteCount are reset to 0, starting the
whole thing again.

For reference, here is the complete project below, make sure yours is working properly before
using it in another project!

 1. n = [
 2. .c = 60,
 3. .cs = 61,
 4. .d = 62,
 5. .ds = 63,
 6. .e = 64,
 7. .f = 65,

590

 8. .fs = 66,
 9. .g = 67,
 10. .gs = 68,
 11. .a = 69,
 12. .as = 70,
 13. .b = 71
 14.]
 15.
 16. semiquaver = 0.25
 17. quaver = 0.5
 18. crotchet = 1
 19. minim = 2
 20.
 21. melody = [
 22. [.note = n.d, .spd = 40, .l = quaver],
 23. [.note = n.e, .spd = 40, .l = quaver],
 24. [.note = n.f, .spd = 40, .l = quaver],
 25. [.note = n.g, .spd = 40, .l = quaver],
 26. [.note = n.e, .spd = 20, .l = crotchet],
 27. [.note = n.c, .spd = 40, .l = quaver],
 28. [.note = n.d, .spd = 20, .l = minim * 4]
 29.]
 30.
 31. endTime = 0
 32. counter = 0
 33.
 34. for i = 0 to len(melody) loop
 35. temp = melody[i].l
 36. melody[i].l = counter
 37. counter += temp
 38. repeat
 39.
 40. endTime = counter
 41.
 42. noteCount = 0
 43. timer = 0
 44. setReverb(0, 8000, 0.5)
 45.
 46. loop
 47. clear()
 48.
 49. if noteCount < len(melody) then
 50. if timer >= melody[noteCount].l then
 51. note = note2Freq(melody[noteCount].note)
 52. speed = melody[noteCount].spd
 53. playNote(0, 3, note, 1, speed, 0.5)
 54. noteCount += 1
 55. endif
 56. endif
 57.
 58. timer += (120 / 60) / 60
 59.

591

 60. if timer >= endTime then
 61. stopChannel(0)
 62. endif
 63.
 64. update()
 65. repeat

Playing Multiple Melodies Simultaneously

Aha! So you want to harmonise?

Well, this is very possible. As we mentioned earlier, we have 16 channels to select from. This
means we can have 16 melodies all playing at the same time if we want, although that might get a
little bit difficult to listen to!

Start a new project file before moving on. We’re going to need the same note data from before, so
copy the following section into your new project:

 1. n = [
 2. .c = 60,
 3. .cs = 61,
 4. .d = 62,
 5. .ds = 63,
 6. .e = 64,
 7. .f = 65,
 8. .fs = 66,
 9. .g = 67,
 10. .gs = 68,
 11. .a = 69,
 12. .as = 70,
 13. .b = 71
 14.]
 15.
 16. semiquaver = 0.25
 17. quaver = 0.5
 18. crotchet = 1
 19. minim = 2

To make two melodies occur at the same time we simply need to use duplicates of our variables.
The best way to do this is to convert the variables like noteCount and endTime into arrays. Of
course, our melody array will also need to be placed inside an array. Confusing? Worry not:

 21. melody = [
 22. [
 23. [.note = n.d, .spd = 40, .l = quaver],
 24. [.note = n.e, .spd = 40, .l = quaver],
 25. [.note = n.f, .spd = 40, .l = quaver],
 26. [.note = n.g, .spd = 40, .l = quaver],
 27. [.note = n.e, .spd = 20, .l = crotchet],
 28. [.note = n.c, .spd = 40, .l = quaver],
 29. [.note = n.d, .spd = 20, .l = minim * 4]
 30.],

592

 31. [
 32. [.note = n.e, .spd = 10, .l = minim],
 33. [.note = n.a, .spd = 10, .l = minim],
 34. [.note = n.d, .spd = 10, .l = minim]
 35.]
 36.]

Here we’ve added another array of structures to our melody array. Let’s say we wanted to access
the 2nd note of the 2nd melody array. That would look something like melody[1][2].note. If we
wanted to access the 7th note of the first melody array, that would be: melody[0][6].note.

Now we must modify the other parts of the code to use these arrays rather than single values.
Since we need two separate note counters and end times, these will become small arrays too:

 38. endTime = [0, 0]
 39. noteCount = [0, 0]
 40.
 41. for i = 0 to len(melody) loop
 42. counter = 0
 43. for j = 0 to len(melody[i]) loop
 44. temp = melody[i][j].l
 45. melody[i][j].l = counter
 46. counter += temp
 47. repeat
 48. endTime[i] = counter
 49. repeat

Everything about this is exactly the same as before except it happens twice, once for each melody
in our array.

We might want our melodies to played in different wave types to give the sound of different
instruments playing. We could use small arrays just like endTime and noteCount to store
information to apply to each melody:

 51. waveType = [3, 1]
 52. octave = [24, 12]
 53. volume = [0.3, 0.2]

Here we have three small arrays which store the wave type, octave and volume modifier for each
melody.

Before we look at the main loop, let’s set our timer variable and the reverb for each channel:

 55. setReverb(0, 8000, 0.5)
 56. setReverb(1, 8000, 0.5)
 57.
 58. timer = 0

Now let’s create the main loop.

 60. loop
 61. clear()
 62.
 63. for i = 0 to len(melody) loop

593

 64. if noteCount[i] < len(melody[i]) then
 65. if timer >= melody[i][noteCount[i]].l then
 66. note = note2Freq(melody[i][noteCount[i]].note + octave[i])
 67. speed = melody[i][noteCount[i]].spd
 68. playNote(i, waveType[i], note, volume[i], speed, 0.5)
 69. noteCount[i] += 1
 70. endif
 71. endif
 72. repeat
 73.
 74. timer += (120 / 60) / 60
 75.
 76. if timer >= endTime[0] and timer >= endTime[1] then
 77. noteCount[0] = 0
 78. noteCount[1] = 0
 79. timer = 0
 80. endif
 81.
 82. update()
 83. repeat

There we have it! Run the program to hear out two melodies playing simultaneously. Beautiful!

This project will work in just about any scenario you can imagine. The loop we are using would be
your main game loop and you might want it to trigger only at certain times. Feel free to use this
template for your own projects!

Happy composing and see you in the next tutorial!

For reference, here is the completed project just below in case you struggled to get the sections
right. Feel free to start a new project and copy the whole project below:

 1. n = [
 2. .c = 60,
 3. .cs = 61,
 4. .d = 62,
 5. .ds = 63,
 6. .e = 64,
 7. .f = 65,
 8. .fs = 66,
 9. .g = 67,
 10. .gs = 68,
 11. .a = 69,
 12. .as = 70,
 13. .b = 71
 14.]
 15.
 16. semiquaver = 0.25
 17. quaver = 0.5
 18. crotchet = 1
 19. minim = 2
 20.
 21. melody = [

594

 22. [
 23. [.note = n.d, .spd = 40, .l = quaver],
 24. [.note = n.e, .spd = 40, .l = quaver],
 25. [.note = n.f, .spd = 40, .l = quaver],
 26. [.note = n.g, .spd = 40, .l = quaver],
 27. [.note = n.e, .spd = 20, .l = crotchet],
 28. [.note = n.c, .spd = 40, .l = quaver],
 29. [.note = n.d, .spd = 20, .l = minim * 4]
 30.],
 31. [
 32. [.note = n.e, .spd = 10, .l = minim],
 33. [.note = n.a, .spd = 10, .l = minim],
 34. [.note = n.d, .spd = 10, .l = minim]
 35.]
 36.]
 37.
 38. endTime = [0, 0]
 39. noteCount = [0, 0]
 40.
 41. for i = 0 to len(melody) loop
 42. counter = 0
 43. for j = 0 to len(melody[i]) loop
 44. temp = melody[i][j].l
 45. melody[i][j].l = counter
 46. counter += temp
 47. repeat
 48. endTime[i] = counter
 49. repeat
 50.
 51. waveType = [3, 1]
 52. octave = [24, 12]
 53. volume = [0.3, 0.2]
 54.
 55. setReverb(0, 8000, 0.5)
 56. setReverb(1, 8000, 0.5)
 57.
 58. timer = 0
 59.
 60. loop
 61. clear()
 62.
 63. for i = 0 to len(melody) loop
 64. if noteCount[i] < len(melody[i]) then
 65. if timer >= melody[i][noteCount[i]].l then
 66. note = note2Freq(melody[i][noteCount[i]].note + octave[i])
 67. speed = melody[i][noteCount[i]].spd
 68. playNote(i, waveType[i], note, volume[i], speed, 0.5)
 69. noteCount[i] += 1
 70. endif
 71. endif
 72. repeat
 73.

595

 74. timer += (120 / 60) / 60
 75.
 76. if timer >= endTime[0] and timer >= endTime[1] then
 77. noteCount[0] = 0
 78. noteCount[1] = 0
 79. timer = 0
 80. endif
 81.
 82. update()
 83. repeat

Functions and Keywords used in this Tutorial

clear(), else, endIf, for, if, loop, note2Freq(), playNote(), repeat, setReverb, then, update()

596

Tutorial 14: An Introduction to Vectors

Strap your focusing hats on, because we’re about to cover something quite tricky. If you can get
your head around this, you’ve just seriously leveled up. As always, getting the hang of using a new
technique means practising and writing your own programs which use them. It’s highly
recommended that you have read the screen coordinates tutorial project before trying this one. If
you’re already comfortable with this, please go right on ahead!

With all that said and done, we should probably introduce the topic. This tutorial is about vectors.
What they are, why they’re useful, and some simple things we can do to begin using them.

We will only be covering the very basic parts of using vectors in this tutorial, for more advanced
information on vectors in FUZE, check out the next vector project!

Vec-what?!

What is a vector? Well… to put it as simply as possible:

A vector is multiple numbers treated as one thing.

Let’s go into a little more detail.

Some things in life can be described with a single measurement. Take temperature, for example.
Temperature is only a measurement of heat. Nothing else.

We call things like this scalars. Height, weight, volume (both types - loudness and quantity!) are
all examples of scalars.

But… What if we wanted to describe something like position? We live in 3 dimensions, so
describing the position of something by just using a single number wouldn’t give us very much
information!

Let’s take the example of a circle right in the middle of our screen. Here’s some code to make that
happen:

 1. loop
 2. clear()
 3.
 4. circle(gWidth() / 2, gHeight() / 2, 100, 16, white, false)
 5.
 6. update()
 7. repeat

Simple enough! We have a single loop which just puts a circle on the screen in one place.

We put the circle at gwidth() / 2, gheight() / 2 which is exactly in the middle of our screen.

597

Now, if somebody asked: “Hey… Where’s that circle?”, and we answered with a only single
dimension: “It’s at gwidth divided by 2”… Do you see the problem?

The circle is at gwidth() / 2 on the x axis, but it is also at gheight() / 2 on the y axis. It is equally at
both points, so to describe its position using just one wouldn’t get the job done!

A vector tells us both pieces of information at the same time.

Using a Vector in a Program

We can set up a vector very easily, and use it to put our circle on screen again. Check out the code
using a vector instead.

 1. position = { gWidth() / 2, gHeight() / 2 }
 2.
 3. loop
 4. clear()
 5.
 6. circle(position.x, position.y, 100, 16, white, false)
 7.
 8. update()
 9. repeat

As you can see, line 1 defines a variable called position. This variable stores a pair of coordinates
in curly brackets {}.

Look out for these curly brackets! If you see some curly brackets in any FUZE code, you know it’s a
vector!

The clever part about vectors in FUZE4 Nintendo Switch is that we can simply define a variable
as a vector, put what we want in the curly brackets, and FUZE will set up a structure with x and y
properties. In our example, we now have position.x and position.y.

“But it does exactly the same thing!” we hear you scream. Well, yes this is true. But it’s what we
can do with this that counts.

Using Vectors to Move a Circle

Remember in the screen tutorial project, we learned how to move a circle around the screen by
changing its x and y location using variables? In this tutorial, we’ll be taking this project to the
next level.

Because vectors are multiple numbers treated as one thing, we can apply one operation to the
whole vector and things will work just fine. Check this out:

 1. position = { gWidth() / 2, gHeight() / 2 }
 2.
 3. loop
 4. clear()
 5.
 6. joy = controls(0)
 7. position += { joy.lx, -joy.ly } * 8
 8.

598

 9. circle(position.x, position.y, 100, 16, white, false)
 10.
 11. update()
 12. repeat

Look at that neat code!

Instead of having separate variables to store the x and y position and operating on them
separately, we can simply add the value of the Joy-Con left control stick to the whole position
vector. Notice we are adding both the joy.lx and joy.ly value together in a vector also.

We have multiplied this vector by 8 to increase the movement speed, otherwise we get a very
slow movement!

Remember, because the y axis is 0 at the top of the screen and gheight() at the bottom, we must
use a minus sign (-) before joy.ly to make the circle move up when we push the control stick
upwards.

Just to break this down even further, line 7 is taking each part of the position vector, adding the
the joy.lx value to position.x and joy.ly to position.y.

It’s really two lines of code in one!

Let’s make this movement slightly more advanced, since we are leveling up in this tutorial after all.

Currently, when we let go of the control stick, our circle stops immediately. This might be what we
want sometimes, but it is more realistic and certainly more satisfying to have a nice slow down
effect.

We can achieve this with a few more lines of code, and with vectors it becomes neater than ever.

To achieve a slowdown effect, we need something called velocity. Change your code to look like the
program below:

 1. position = { gWidth() / 2, gHeight() / 2 }
 2. velocity = { 0, 0 }
 3.
 3. loop
 4. clear()
 5.
 6. joy = controls(0)
 7. velocity += { joy.lx, -joy.ly } * 8
 8. position += velocity
 9. velocity *= 0.9
 10.
 11. circle(position.x, position.y, 100, 16, white, false)
 12.
 13. update()
 14. repeat

We now have another variable at the beginning of the program called velocity. This variable
stores an empty vector ({ 0, 0 }).

599

On line 7, you can see that rather than increasing the position variable by the control stick values,
we increase the velocity vector instead. Separating things like this allows us to control how much
deceleration (slowdown) we want to occur when we let go of the stick.

On line 9, we apply a multiplication to the velocity vector. By multiplying by 0.9 every time the
loop repeats, we are constantly making the number smaller. This only truly takes effect when we
let go of the stick however, because if we are pushing the stick in a direction we are continually
reading the value and applying it.

As soon as we let go, line 9 takes becomes much more visually apparent, and the amount of
velocity applied to the circle’s position begins decreasing. We see this as a slow down effect.

Decrease this number to make the slow down effect faster. The closer we get to 1, the longer it
takes to stop.

Colours as Vectors

You may or may not know this, but all colours on a screen are created using a mix of red, green
and blue light.

When we set up a vector, we know that FUZE gives us a structure with a .x and a .y. Actually,
FUZE automatically creates a .z and a .w in addition to these, giving us 4 total values. If we do not
define these values ina vector, they default to 0.

The cool thing about vectors in FUZE4 Nintendo Switch is that it also allows us to access these 4
numbers with .r, .g, .b and .a, standing for red, green, blue and alpha respectively.

This means we can use a vector as a colour! We can specify the amount of each colour, and a
transparency (alpha).

These numbers are between 0 and 1, with 0 being no colour at all and 1 being maximum. Let’s take
the colour red for example.

In FUZE4 Nintendo Switch, the word red is really a label for the vector {1, 0, 0, 1}, for maximum
red, no green or blue, and full opacity.

Let’s say we wanted to create a colour of our very own. Check out the example below:

 1. col = { 0.5, 0.8, 0.1, 1 }
 2.
 3. loop
 4. clear(col)
 5. update()
 6. repeat

Here we set up a vector on line 1, then use a simple loop to clear the screen with our colour. A
nice mint green!

If we wanted to increase the amount of blue in the colour during the loop, we could do something
like this:

 1. col = { 0.5, 0.8, 0.1, 1 }
 2.

600

 3. loop
 4. clear(col)
 5. col.b += 0.001
 6. update()
 7. repeat

Run the program to see our mint green colour gently shift into a light blue. Very nice!

Recap

A vector is multiple numbers treated as one thing.

You can notice them easily whenever you spot curly brackets {}.

We use them for all kinds of things. Mainly, they are used for position and colour.

This tutorial covers only the very basics of how to use vectors in a program. Using vectors gives
us access to some very impressive and useful maths, but this is something we’ll dive into later.

If we want objects to bounce off each other as they would in the real world, vectors make this
much easier. However, this is much too complicated for an introduction to vectors, so we’ll dive
into that at a later time.

Well done. We’re getting advanced now! Try setting up your own vectors in your projects and use
them to control the position of objects, or to change the colour of certain things. Getting the hang
of this will really open up a world of experimentation!

See you in the next tutorial!

Functions and Keywords used in this tutorial

circle(), clear(), loop, repeat, update()

601

Tutorial 15: Sprites

In FUZE4 Nintendo Switch there are a whole load of functions and commands to help us use the
vast amount of assets to create a game.

In this tutorial we’ll be creating a simple game using the sprite system. As always we’ll start simple
and add complexity as we go.

Creating a Sprite

Let’s get the basics up and running. We need to load an image, then use that image to create a
sprite:

 1. playerSpr = createSprite()
 2. playerImg = loadImage("Untied Games/Player ships", false)
 3. setSpriteImage(playerSpr, playerImg)

Done! First we use the createSprite() function and store the result in a variable called playerSpr.
Doing this creates a sprite labeled playerSpr which we can manipulate using the other sprite
functions.

Before we get to that, we must assign an image file to the sprite or we won’t have anything to look
at!

On line 2 we use the loadImage() function to store an image file into a variable called playerImg.
We then use the setSpriteImage() function to assign this image file to our sprite on line 3.

Now we can do a whole host of cool things!

setSpriteLocation()

Let’s begin by simply putting the sprite on screen. First we’ll need to set the location of our sprite:

 4. setSpriteLocation(playerSpr, { gwidth() / 2, gheight() / 2 })

Here we use the setSpriteLocation() function to give our player sprite a screen position. We have
used gwidth() / 2, gheight() / 2 to give us the middle of the screen.

That’s really all we need to start with. Let’s draw our sprite on the screen using a loop.

 6. loop
 7. clear()
 8. drawSprites()
 9. update()
 10. repeat

Run the program to see 4 tiny little ships in the middle of our screen.

602

setSpriteScale()

You might have noticed that these ships are a little small… We need to scale the image up to make
it more usable. Add the following line before the loop:

 5. setSpriteScale(playerSpr, { 4, 4 })
 6.
 7. loop
 8. clear()
 9. drawSprites()
 10. update()
 11. repeat

The setSpriteScale() function allows us to multiply the x and y size of a sprite. We have used the
number 4 in both the x and the y to make our sprite 4 times larger. If one of these numbers is
different it might look a little stretched out!

Run the program now and our sprite should be a much better size.

setSpriteAnimation()

Our image file is a collection of 4 ships for a designer to choose from. Since the sprite is created
from the whole image, we have a sprite made of 4 ships. If we were to use this to make a game we
only want a single ship, not all 4 at once.

We can use the setSpriteAnimation() function to do just that. This clever function tells FUZE
which tiles from an image we want to display. We use it to animate a sprite, but here we will be
using it to display a single tile.

Add the following line before the loop:

 6. setSpriteAnimation(playerSpr, 0, 0, 0)
 7.
 8. loop
 9. clear()
 10. drawSprites()
 11. update()
 12. repeat

We should take a look at this function more detail. The first argument is the variable which
stores our sprite. Nice and easy.

Next up we have three numbers. The first of these is the starting tile for the animation. This tells
FUZE which of the tiles in the image to start with. Take a look at the graphic below:

603

As you can see, the tiles begin at 0 and count up. The tile we want is tile 0. This means the first
number in our setspriteAnimation() function is 0.

The second number is the end tile for our animation. Since we want our ship to remain the same,
this number is also 0.

The last number in the function is the speed of the animation. in frames per second. Since our
animation is only a single tile, we have a speed of 0.

Run the program and we’ll have a nicely sized, single ship on screen.

What do you mean it’s boring? Alright, let’s move the sprite around.

setSpriteSpeed()

To actually move the sprite we’ll need to use the setSpriteSpeed() function.

We can use this function to apply a direction and movement speed to a sprite:

 7. setSpriteSpeed(playerSpr, { 60, 0 })
 8.
 9. loop
 10. clear()
 11. updateSprites()
 12. drawSprites()
 13. update()
 14. repeat

Notice we have added two lines this time. Since we want the position of our sprite to change as the
program is running, we must use the updateSprites() function to the main loop. This must go
before the drawSprites() function.

In the setSpriteSpeed() function there are two arguments. The first is of course the variable
which stores the sprite we want to move.

The second is a two-dimensional vector which sets the movement speed in pixels for each axis. In
our line we have applied a velocity of 60 to the x axis and a velocity of 0 to the y axis. This means
our ship will move to the right at 60 pixels per second.

Run the program to see our ship move gracefully along the x axis.

604

Creating a Game Using the Sprite Functions

In the next tutorial, we’ll be using all that we’ve learned to create a side-scrolling game where we
must avoid meteorites.

Make sure you’re familiar with the functions we’ve covered here, then we’ll see you in the next
project!

Functions and Keywords Used in this Tutorial

createSprite(), clear(), drawSprites(), loop, repeat, setSpriteAnimation, setSpriteImage(),
setSpriteSpeed(), update(), updateSprites()

605

Tutorial 16: Creating a Game using the Sprite Functions

Welcome back! In this tutorial we will be creating a simple game using the sprite functions
covered in the previous project.

We’ll be using the same ship assets from the brilliant Untied Games along with some awesome
meteorites.

In this game, our ship will always be falling downwards. The challenging part is that we will have
to press the A button to keep our ship flying. This might remind you of a game you’ve played
before!

Let’s start just like before by creating the player sprite from an image file:

 1. playerSpr = createSprite()
 2. playerImg = loadImage("Untied Games/Player ships", false)
 3. setSpriteImage(playerSpr, playerImg)

Next we’ll need to set the location of the sprite.

To help us out with this, we should create a variable which stores the width and height of the
screen since we’ll need these numbers a lot going forward:

Make a couple of new lines from line 1. This will move our other lines down slightly:

 1. screen = { gwidth(), gheight() }
 2.
 3. playerSpr = createSprite()
 4. playerImg = loadImage("Untied Games/Player ships", false)
 5. setSpriteImage(playerSpr, playerImg)

We have defined a variable called screen which stores a vector. This vector has an x property of
gwidth() and a y property of gheight(). This means we can now access the width or height of the
screen by using screen.x or screen.y. Very helpful!

With that done, we should create a variable which will store the scale multiplier for our sprites. It
will save us some typing in the future to do this! Add the following new line:

 1. screen = { gwidth(), gheight() }
 2. scale = { screen.y / 270, screen.y / 270 }
 3.
 4. playerSpr = createSprite()
 5. playerImg = loadImage("Untied Games/Player ships", false)
 6. setSpriteImage(playerSpr, playerImg)

The scale variable stores a vector to use in our setSpriteScale() functions. By using screen.y /
270 our scale will change depending on whether the console is docked or undocked. We use the
same number for both the x and the y parts of the vector so that our sprites scale evenly.

606

Now we can create a variable which will store the player position for easy reference:

 1. screen = { gwidth(), gheight() }
 2. scale = { screen.y / 270, screen.y / 270 }
 3.
 4. playerSpr = createSprite()
 5. playerImg = loadImage("Untied Games/Player ships", false)
 6. setSpriteImage(playerSpr, playerImg)
 7. playerPos = { screen.x / 20, screen.y / 2 }

We’ve called the variable playerPos. It stores a vector with a particular location on screen. We
can now access the position using playerPos.x and playerPos.y.

Lastly, we might want to store the player velocity in a variable too to make things easier later on
in the program. Let’s add an empty vector for now:

 1. screen = { gwidth(), gheight() }
 2. scale = { screen.y / 270, screen.y / 270 }
 3.
 4. playerSpr = createSprite()
 5. playerImg = loadImage("Untied Games/Player ships", false)
 6. setSpriteImage(playerSpr, playerImg)
 7. playerPos = { screen.x / 20, screen.y / 2 }
 8. playerVel = { 0, 0 }

Alright, let’s use the sprite functions to make use of all this information.

 10. setSpriteAnimation(playerSpr, 0, 0, 0)
 11. setSpriteScale(playerSpr, scale)
 12. setSpriteLocation(playerSpr, playerPos)

Drawing and Moving the Player

Alright! Let’s create a loop to draw the sprite on screen.

 14. loop
 15. clear()
 16. updateSprites()
 17. drawSprites()
 18. update()
 19. repeat

Currently our loop only puts the sprite on screen. Let’s add some controls to this program. First,
we’ll want to recalculate the screen and scale variables in the loop. This will mean that if we
change from handheld mode to TV mode by placing the console into the Nintendo Switch dock, the
screen and scale will be updated so it looks right:

 14. loop
 15. clear()
 16. screen = { gwidth(), gheight() }
 17. scale = { screen.y / 270, screen.y / 270 }
 18. setSpriteScale(playerSpr, scale)
 19. updateSprites()

607

 20. drawSprites()
 21. update()
 22. repeat

There we go. Now we can use the screen and scale variables in the loop without worrying if the
console is handheld or TV mode. To make the scale actually change, we use the setSpriteScale()
function in the loop on line 18.

Now let’s apply some controls:

 14. loop
 15. clear()
 16. screen = { gwidth(), gheight() }
 17. scale = { screen.y / 270, screen.y / 270 }
 18.
 19. c = controls(0)
 20.
 21. playerVel = { c.lx * screen.x / 4, screen.y / 3 - c.a * screen.y / 1.5 }
 22.
 23. setSpriteSpeed(playerSpr, playerVel)
 24. setSpriteScale(playerSpr, scale)
 25.
 26. updateSprites()
 27. drawSprites()
 28. update()
 29. repeat

We’ve added some space between the lines in the program above to make things a little more
clear.

There are three new lines here and they can be seen on line 19, line 21 and line 23.

First, we use the controls() function to store the state of the controls into a variable. We’ve called
this variable c.

Next, we update the playerVel variable. In the curly brackets are the two ways we want to affect
the velocity.

 21. playerVel = { c.lx * screen.x / 4, screen.y / 3 - c.a * screen.y / 1.5 }

We want to be able to move the ship back and forth slightly to speed up and slow down. We are
using the left control stick (c.lx) to do this.

Since the control stick returns a value between -1 and 1, the effect of this will be very tiny indeed.
We have multiplied this by screen.x / 4 to enhance the movement speed, and by using the
{screen.x} variable here we can make sure the speed is the same in handheld or TV mode.

Similarly, for the y axis velocity, we use the screen.y to move the ship down at a speed dependent
on the screen size. We minus the value of the A button (c.a) to move the ship upwards. Since the A
button is either 0 or 1, we multiply this by screen.y / 1.5 to give us a stronger effect.

In order to make the movement actually take place, we need to apply the new values in the
playerVel variable to the sprite velocity.

608

On line 23 we use the setSpriteSpeed() function to apply the values in the playerVel variable to
the player sprite.

Run the program and get a feel for moving around the screen! Remember, you must hold the A
button in order to move up and the left control stick will speed up and slow down the ship.

Creating Boundaries

At the moment, we can move our player off screen. This isn’t very good and will make the game
too easy. Let’s introduce some restrictions to how far the player can move.

Below, we use a new function called clamp() to restrict the values of the playerPos variable. This
very useful function can save us lots of if statements when used correctly. The first value in the
brackets is the value to restrict, the second is the lower limit and the third is the upper limit.

 14. loop
 15. clear()
 16. screen = { gwidth(), gheight() }
 17. scale = { screen.y / 270, screen.y / 270 }
 18.
 19. c = controls(0)
 20.
 21. playerVel = { c.lx * screen.x / 4, screen.y / 3 - c.a * screen.y / 1.5 }
 22.
 23. playerPos = getSpriteLocation(playerSpr)
 24.
 25. playerPos.x = clamp(playerPos.x, screen.x / 10, screen.x - screen.x / 10)
 26. playerPos.y = clamp(playerPos.y, screen.y / 10, screen.y - screen.y / 10)
 27.
 28. setSpriteLocation(playerSpr, playerPos)
 29. setSpriteSpeed(playerSpr, playerVel)
 30. setSpriteScale(playerSpr, scale)
 31.
 32. updateSprites()
 33. drawSprites()
 34. update()
 35. repeat

To understand why we are using the values screen.x / 10 and screen.x - screen.x / 10 let’s
visualise what we are achieving:

609

In the picture, the yellow outer box outlines the actual Nintendo Switch screen. The width and
height of that screen is stored in the screen.x and screen.y variables.

The white inner box outlines the boundary we have created.

If the player position becomes more or less than the boundaries of our inside box, our clamp()
function limits the values.

In order to actually place the player sprite on screen at the restricted positions, we must set the
sprite location using the setSpriteLocation() function. To make this work, we use the
getSpriteLocation() function on line 23 to make sure our player sprite is always placed at the
location it should be.

Creating Obstacles

It’s not really a very fun game unless we have something to do! Let’s create a bunch of flying rocks
to avoid.

First, we’ll need to load the images we need and create the sprites.

We’ll be using more of the brilliant Untied Games assets for this. There are 4 different asteroid
assets to use. We will store all of these into an array.

We’ll need to do the following changes before the main loop:

 14. rockImgs = [
 15. loadImage("Untied Games/Asteroid A", false),
 16. loadImage("Untied Games/Asteroid B", false),
 17. loadImage("Untied Games/Asteroid C", false),
 18. loadImage("Untied Games/Asteroid D", false)
 19.]

Here is the array of images. With this, we can access any of the images with something like
rockImgs[1].

Next up we must create the array of information we’ll use for the rocks which appear on screen.
We’ll call this array rocks and we’ll be creating it just beneath the images array:

610

 21. array rocks[50] = [
 22. .spr = 0,
 23. .pos = { 0, 0 },
 24. .vel = { 0, 0 }
 25.]

That’s that! We’ve created an array of 50 elements, each one with three properties. Each rock will
have a .spr property to store the sprite, a .pos property to store the position on screen and a .vel
property to store the velocity.

Now let’s populate this array with information it needs. We’ll need a for loop for this:

 27. for i = 0 to len(rocks) loop
 28. n = random(4)
 29. rocks[i].spr = createSprite()
 30. setSpriteImage(rocks[i].spr, rockImgs[n])
 31. rocks[i].pos = { screen.x + random(screen.x * 2), random(screen.y) }
 32. rocks[i].vel = { random(-screen.x / 5), random(32) - 16 }
 33. setSpriteAnimation(rocks[i].spr, 0, 39, 10)
 34. setSpriteLocation(rocks[i].spr, rocks[i].pos)
 35. repeat

This for loop counts up to the length of the rocks array. Let’s look at each line in detail:

 28. n = random(4)

First, we create a variable called n which stores a random number out of 4 possibilities. This gives
us 0, 1, 2 and 3. This random number will be used to select a rock image from the rockImgs array.

 29. rocks[i].spr = createSprite()
 30. setSpriteImage(rocks[i].spr, rockImgs[n])

On line 29 we use the createSprite() function to create a sprite for each rock. On the next line, we
use the setSpriteImage() function to set a the randomly selected rock image to the sprite.

 31. rocks[i].pos = { screen.x + random(screen.x * 2), random(screen.y) }

Next, on line 31, we set the .pos property of each rock to store a position. We want the rocks
randomly distributed over the y axis, so the y part of the vector is random(screen.y). Since we
want to start with no rocks on screen and have them travel towards us, the x part of the vector is
screen.x + random(screen.x * 2). This makes sure the rocks are a random amount further than
the edge of the screen to begin with.

 32. rocks[i].vel = { random(-screen.x / 5), random(32) - 16 }

On line 32 we set the .vel property for each rock that will be used for the velocity. The speed the
rocks travel towards us needs to depend on the screen size, otherwise in handheld and TV mode
the rocks will feel like they move at very different speeds. We use a random number chosen out of
-screen.x / 5. We must put a - in front of screen.x to make sure the asteroids travel towards us
instead of away!

611

We want the rocks to move up or down slowly to really add variety. For this we use a random
number out of 32 in the y part of the vector, but if we minus 16 from the result we have a range of
-16 to 16 giving us randomly chosen upwards or downward movement at a range of speeds.

 33. setSpriteAnimation(rocks[i].spr, 0, 39, random(10) + 10)

On line 33 we set the animation for each rock. Each asteroid image has 40 frames of animation, so
our start tile is 0 and the end tile is 39. For the animation speed we have used a random number
between 10 and 20 to animate the rocks at different speeds.

 34. setSpriteLocation(rocks[i].spr, rocks[i].pos)

Finally, we set the location of each rock sprite using the setSpriteLocation() function.

Still here? I bet you’re thinking “Wow, this project rocks!”

…

What do you mean it was a terrible joke? Alright let’s move on.

Drawing the Rocks on Screen

Now that we’ve got all the information we need in the rocks array, we can draw them to the
screen. We’ll be going back into the main loop for this. Because we’ve inserted lots of new code
before the loop, the line numbers are a little different now. To make sure you are adding code in
the right place, make sure your main loop looks like the one below before we get started:

 37. loop
 38. clear()
 39. screen = { gwidth(), gheight() }
 40. scale = { screen.y / 270, screen.y / 270 }
 41.
 42. c = controls(0)
 43.
 44. playerVel = { c.lx * screen.x / 4, screen.y / 3 - c.a * screen.y / 1.5 }
 45.
 46. playerPos = getSpriteLocation(playerSpr)
 47.
 48. playerPos.x = clamp(playerPos.x, screen.x / 10, screen.x - screen.x / 10)
 49. playerPos.y = clamp(playerPos.y, screen.y / 10, screen.y - screen.y / 10)
 50.
 51. setSpriteLocation(playerSpr, playerPos)
 52. setSpriteSpeed(playerSpr, playerVel)
 53. setSpriteScale(playerSpr, scale)
 54.
 55. updateSprites()
 56. drawSprites()
 57. update()
 58. repeat

We need to add a for loop before the updateSprites() line. Go to line 54 and create a couple of new
lines:

 53. setSpriteScale(playerSpr, scale)
 54.

612

 55.
 56.
 57. updateSprites()

We’ll be adding the for loop starting on line 55. We must count over each rock in the rocks array
and do a number of things for each one:

 55. for i = 0 to len(rocks) loop
 56. setSpriteScale(rocks[i].spr, scale)
 57. setSpriteSpeed(rocks[i].spr, rocks[i].vel)
 58. rocks[i].pos = getSpriteLocation(rocks[i].spr)
 59. rockSize = getSpriteSize(rocks[i].spr)
 60. if rocks[i].pos.x + rockSize.x / 2 < 0 then
 61. rocks[i].pos = { screen.x + random(screen.x), random(screen.y) }
 62. setSpriteLocation(rocks[i].spr, rocks[i].pos)
 63. endif
 64. repeat
 65.
 66. updateSprites()
 67. drawSprites()
 68. update()
 69. repeat

Phew! That’s quite a complex looking bit of code right there. Fear not, it’s actually quite simple if
we take it step by step.

 56. setSpriteScale(rocks[i].spr, scale)

The first thing we do in the for loop is to set the scale of each rock using the setSpriteScale()
function.

 57. setSpriteSpeed(rocks[i].spr, rocks[i].vel)

Next, we want to apply the speed for each rock to the sprite. We use the setSpriteSpeed()
function, applying the vector stored in rocks[i].vel to each sprite. This line moves each rock
across the screen and up or down depending on that rock’s y velocity.

 58. rocks[i].pos = getSpriteLocation(rocks[i].spr)

Next up we update the each rock’s position variable to be the location of the sprite. Doing this
allows us to write neater code later in the for loop. We are going to be checking each rock’s
position in just a minute and this gives us a neat way to check a rock’s current position.

 59. rockSize = getSpriteSize(rocks[i].spr)

Similarly, here we are creating a variable called rockSize and using it to store the size of each rock
on screen. This will be a very useful variable in just a minute!

 60. if rocks[i].pos.x + rockSize.x / 2 < 0 then
 61. rocks[i].pos = { screen.x + random(screen.x), random(screen.y) }
 62. setSpriteLocation(rocks[i].spr, rocks[i].pos)
 63. endif

613

When a rock travels off the left side of the screen, we must do something to bring it back to the
right hand side. Otherwise we would need a huge number of rocks! This if statement allows us to
re-use each rock in the array when it has traveled off screen.

We check if the x position of the right side of each rock (rocks[i].pos.x + rockSize.x / 2) has become
less than 0. If it has, we update the rocks[i].pos variable to be a random amount further than the
right side of the screen on the x axis (screen.x + random(screen.x)) and a random position on the
y axis (random(screen.y)). Finally we use the setSpriteLocation() function to update the location
of the sprite.

Done!

Run the program to see our rocks flying across the screen towards us. When a rock travels off the
left side of the screen, it will eventually come back on screen from the right!

Practise maneuvering around the rocks! We’re about to add collision.

Colliding with the Rocks

Before we write the code which allows us to collide with a rock, it would be very cool if we could
see some sort of explosion effect happen when we do.

Luckily, we have plenty of awesome explosion effects! You know the drill, we need to load an
image and create a sprite. Add the following lines just before the main loop (you’ll have to create a
couple of lines of space):

 37. expSpr = createSprite()
 38. expImg = loadImage("Untied Games/Explosion 09", false)
 39. setSpriteImage(expSpr, expImg)

As usual, we create a variable to store the image file. We’ve called ours expImg. Next we create
another variable (expSpr which stores the sprite.

Another thing we’ll need to do is to set the visibility of this sprite to false. We do not want to see
the explosion yet, only when we collide with a rock. Add the following line:

 40. setSpriteVisibility(expSpr, false)

The setSpriteVisibility() function is incredibly useful and nice and simple. The first argument is
the sprite variable and the second is either true for visible or false for invisible.

Lastly, we’ll need some sort of flag to tell us whether the player is alive or not. This should be a
true or false variable at the start of our program. Add the following line just before the loop line:

 41. alive = true

Now we have everything we need to make the explosion effect happen, we just need to collide
with a rock!

This next bit of code will take place in the for loop which draws the rocks because we must check
the distance between the player and each rock.

Below is the whole for loop for clarity:

614

 61. for i = 0 to len(rocks) loop
 62. setSpriteScale(rocks[i].spr, scale)
 63. setSpriteSpeed(rocks[i].spr, rocks[i].vel)
 64. rocks[i].pos = getSpriteLocation(rocks[i].spr)
 65. rockSize = getSpriteSize(rocks[i].spr)
 66.
 67. if rocks[i].pos.x + rockSize.x / 2 < 0 then
 68. rocks[i].pos = { screen.x + random(screen.x), random(screen.y) }
 69. setSpriteLocation(rocks[i].spr, rocks[i].pos)
 70. endif
 71.
 72. if distance(playerPos, rocks[i].pos) < rockSize.x / 2 - 50 and alive then
 73. alive = false
 74. setSpriteAnimation(expSpr, 0, 89, 14)
 75. setSpriteLocation(expSpr, playerPos)
 76. setSpriteScale(expSpr, scale)
 77. setSpriteVisibility(expSpr, true)
 78. setSpriteVisibility(playerSpr, false)
 79. endif
 80. repeat
 81.
 82. updateSprites()
 83. drawSprites()
 84. update()
 85. repeat

Our new section of code is the if statement starting at line 79. As usual, we’ll go through this line
by line:

 72. if distance(playerPos, rocks[i].pos) < rockSize.x / 2 - 50 and alive then

For us to collide with a rock our position must overlap with the rock’s position. We check if the
distance between the centre of our ship (playerPos) and the centre of each rock (rocks[i].pos) is
less than half the size of that rock minus 50 pixels (< rockSize.x / 2 - 50). The 50 pixels part is
really personal preference, changing this number will make the collision looser or tighter.

The second part of the if statement check is whether the alive variable is true. We only want to
collide with a rock once.

 73. alive = false

The first thing we do in the if statement is to make the alive variable false. This means we can
only collide once. Once we do, the if statement can no longer be true.

 74. setSpriteAnimation(expSpr, 0, 89, 14)

Next up we set the animation for the explosion sprite. Our explosion sprite has 90 frames,
beginning with 0 and ending at 89. A speed of 14 gives us a nice looking explosion, feel free to
change this!

 75. setSpriteLocation(expSpr, playerPos)

Now we must set the location of the explosion sprite to be the same as the player position! We
wouldn’t want the explosion happening in a random place on screen.

 76. setSpriteScale(expSpr, scale)

615

Next we set the scale multiplier for the explosion sprite. Simple enough!

 77. setSpriteVisibility(expSpr, true)
 78. setSpriteVisibility(playerSpr, false)

These next two lines set the visibility for the player to false and the visibility for the explosion to
true. Without these, we wouldn’t see anything!

That’s that. We’re so close to the finish line!

We have one last thing to do. Once the explosion animation has finished we want to set the
visibility back to false. without this the explosion animation will keep looping forever!

We’ll need an if statement just before the updateSprites() function:

 82. if getSpriteAnimFrame(expSpr) >= 89 then
 83. setSpriteVisibility(expSpr, false)
 84. endif
 85.
 86. updateSprites()
 87. drawSprites()
 88. update()
 89. repeat

As you can see, this part comes just before the last 4 lines of the loop.

We use the getSpriteAnimFrame() function to check which frame of animation our explosion is
currently on. Since we know that the explosion’s last animation frame is frame 89, we have an
easy way to check if it’s finished.

We use the setSpriteVisibility() function one last time to make the visibility false once it reaches
the end of its animation cycle.

Complete!

Congratulations on making it through the tutorial! Now you can customise the game to your
heart’s content. If you unfortunately break anything at all, you can find a complete version of the
program just below. Feel free to copy and paste all the code below into a new project file:

 1. screen = { gwidth(), gheight() }
 2. scale = { screen.y / 270, screen.y / 270 }
 3.
 4. playerSpr = createSprite()
 5. playerImg = loadImage("Untied Games/Player ships", false)
 6. setSpriteImage(playerSpr, playerImg)
 7. playerPos = { screen.x / 20, screen.y / 2 }
 8. playerVel = { 0, 0 }
 9.
 10. setSpriteAnimation(playerSpr, 0, 0, 0)
 11. setSpriteScale(playerSpr, scale)
 12. setSpriteLocation(playerSpr, playerPos)
 13.
 14. rockImgs = [
 15. loadImage("Untied Games/Asteroid A", false),
 16. loadImage("Untied Games/Asteroid B", false),

616

 17. loadImage("Untied Games/Asteroid C", false),
 18. loadImage("Untied Games/Asteroid D", false)
 19.]
 20.
 21. array rocks[50] = [
 22. .spr = 0,
 23. .pos = { 0, 0 },
 24. .vel = { 0, 0 }
 25.]
 26.
 27. for i = 0 to len(rocks) loop
 28. n = random(4)
 29. rocks[i].spr = createSprite()
 30. setSpriteImage(rocks[i].spr, rockImgs[n])
 31. rocks[i].pos = { screen.x + random(screen.x * 2), random(screen.y) }
 32. rocks[i].vel = { random(-screen.x / 5), random(32) - 16 }
 33. setSpriteAnimation(rocks[i].spr, 0, 39, 10)
 34. setSpriteLocation(rocks[i].spr, rocks[i].pos)
 35. repeat
 36.
 37. expSpr = createSprite()
 38. expImg = loadImage("Untied Games/Explosion 09", false)
 39. setSpriteImage(expSpr, expImg)
 40. setSpriteVisibility(expSpr, false)
 41. alive = true
 42.
 43. loop
 44. clear()
 45. screen = { gwidth(), gheight() }
 46. scale = { screen.y / 270, screen.y / 270 }
 47.
 48. c = controls(0)
 49.
 50. playerVel = { c.lx * screen.y / 4, screen.y / 3 - c.a * screen.y / 1.5 }
 51.
 52. playerPos = getSpriteLocation(playerSpr)
 53.
 54. playerPos.x = clamp(playerPos.x, screen.x / 10, screen.x - screen.x / 10)
 55. playerPos.y = clamp(playerPos.y, screen.y / 10, screen.y - screen.y / 10)
 56.
 57. setSpriteLocation(playerSpr, playerPos)
 58. setSpriteSpeed(playerSpr, playerVel)
 59. setSpriteScale(playerSpr, scale)
 60.
 61. for i = 0 to len(rocks) loop
 62. setSpriteScale(rocks[i].spr, scale)
 63. setSpriteSpeed(rocks[i].spr, rocks[i].vel)
 64. rocks[i].pos = getSpriteLocation(rocks[i].spr)
 65. rockSize = getSpriteSize(rocks[i].spr)
 66.
 67. if rocks[i].pos.x + rockSize.x / 2 < 0 then
 68. rocks[i].pos = { screen.x + random(screen.x), random(screen.y) }
 69. setSpriteLocation(rocks[i].spr, rocks[i].pos)
 70. endif
 71.
 72. if distance(playerPos, rocks[i].pos) < rockSize.x / 2 - 50 and alive then
 73. alive = false

617

 74. setSpriteAnimation(expSpr, 0, 89, 14)
 75. setSpriteLocation(expSpr, playerPos)
 76. setSpriteScale(expSpr, scale)
 77. setSpriteVisibility(expSpr, true)
 78. setSpriteVisibility(playerSpr, false)
 79. endif
 80. repeat
 81.
 82. if getSpriteAnimFrame(expSpr) >= 89 then
 83. setSpriteVisibility(expSpr, false)
 84. endif
 85.
 86. updateSprites()
 87. drawSprites()
 88. update()
 89. repeat

clamp(), clear(), controls(), createSprite(), distance(), drawSprites(), else, endIf, for,
getSpriteAnimFrame(), getSpriteSize(), if, loop, repeat, setSpriteAnimation, setSpriteLocation(),
setSpriteImage(), setSpriteScale, setSpriteSpeed(), setSpriteVisibility(), then, to, update(),
updateSprites()

618

3D Tutorial 1: Simple Shapes

Welcome to the first of our tutorials on 3D projects!

Strap yourself in for quite the read! There’s lots of information here which must be explained
clearly, but once it’s out of the way we can start throwing 3D objects around the screen like there’s
no tomorrow!

Before we get started, let’s refresh a couple of important things.

X and Y

Below is a picture of an x and y axis. Seem familiar?

Imagine we have the number 0 sat right in the middle of our axes, where the little white dot is.

If we move along either axis, away from the centre point of 0, we will either be increasing or
decreasing along one of them. Take a look below to see what we mean!

619

Happy with that? Excellent.

Z

Let’s throw another axis in there for a total of 3 Dimensions. We call this axis z.

This line brings us into 3D space. It behaves just like our x and y axes - you can still increase and
decrease your position:

620

Take a look at the cube below sitting nicely in our 3D space to picture the z axis properly.

Let’s say I want to increase the z position of our cube. That would look something like this:

621

See how our cube has moved along the z axis? Almost as if it has gotten closer to us.

It’s important to remember that in 3D space, things are a little different than 2D.

We must always think about the position of the camera. Depending on where our camera is, we
might see the x, y and z axes very differently!

Way of the Cube

Time for some programming.

Let’s create a simple program to make a single cube appear in 3D space.

Type (or copy and paste) the following code into the FUZE4 Nintendo Switch editor.

 1. obj = placeObject(cube, { 0, 0, 0 }, { 1, 1, 1 })
 2. setObjectMaterial(obj, red, 1, 1)
 3. setCamera({ 0, 0, 10 }, { 0, 0, 0 })
 4.
 5. loop
 6. clear()
 7. drawObjects()
 8. update()
 9. repeat

When you run this program, don’t be shocked! You won’t see a cube at all. In fact, you’ll see a
square.

There is a very good reason for this, but before we jump right in and explain why, let’s talk about
these exciting new functions we’re using.

622

placeObject()
 1. obj = placeObject(cube, { 0, 0, 0 }, { 1, 1, 1 })

Line 1 defines a variable called obj (short for object). In this variable we are storing a shape
created by the placeObject() function.

The first argument in the placeObject() function is the type of object. FUZE4 Nintendo Switch
knows a few basic 3D shapes by name. We have cube, sphere, pyramid, cone, cylinder, wedge
and hemisphere.

For now, we’ll keep things simple and use a cube.

The second argument in placeObject() is a vector which describes the position of our object. We
want our cube to appear at 0 on the x axis, 0 on the y axis and 0 on the z axis. In other words, right
in the middle of our 3D world space. Change these numbers to change the location of our cube! See
what happens when you change each of the numbers in the vector.

Lastly, we have a vector to set the scale of our object on all 3 axes. We want our cube to be a
sensible size and the same size in all directions, so we are using the number 1 for each element of
the vector. Try changing these numbers to change the dimensions of our cube!

setObjectMaterial()
 2. setObjectMaterial(obj, red, 1, 1)

Line 2 sets the material our object is made from. This will change the way light behaves on the
surface of the object.

The first argument in the setObjectMaterial() function is the variable which stores the object we
are configuring. We’re configuring our cube, which is stored in the obj variable.

The second argument is the colour we want our object to be. We can either use a colour name
here, or an RGBA (red, green, blue, alpha) vector.

The third argument is a boolean value (either true or false) for metal or non-metal.

Finally, our last argument is roughness. This value can be anything between 0 and 1, where 0 is
totally smooth and very shiny, and 1 is full roughness, which makes the light appear smoother.

setCamera()
 3. setCamera({ 0, 0, 10 }, { 0, 0, 0 })

Without a camera, we won’t be able to see anything!

The setCamera() function contains two arguments. Our first argument is a vector which sets the
position of the camera in 3D world space.

Notice that our camera is positioned at 0 on the x axis, 0 on the y axis and 10 on the z. What does
this mean? Take a look at the diagram below:

623

In FUZE4 Nintendo Switch, when working in 3D space, each unit of 1 represents 1 meter. By
placing our camera at {0, 0, 10} we put it at 10 meters positive on the z axis.

The second argument is the position in 3D space the camera is pointing at. We want our camera
looking right at our cube which is positioned right in the centre of world space at {0, 0, 0}, so we’re
using that!

Okay! We’ve got the tough parts out of the way.

drawObjects()
 5. loop
 6. clear()
 7. drawObjects()
 8. update()
 9. repeat

The main loop of our code is a simple clear() and update() with only one function call.

We use the drawObjects() function to prepare our 3D world to be sent to the screen, and the
update() function actually sends all of this to the screen for us to see!

Well done. That was a lot to take in, but now you’re equipped to move on.

So have you figured out why we only see a square?

The reason is that we are looking at our cube directly from the front!

So let’s change that!

Change the setCamera() line in your code so it looks like this:

 3. setCamera({ 0, 5, 10 }, { 0, 0, 0 })

624

Notice all we have done is changed the y element of the position vector to 5 instead of 0. This will
move the camera upwards on the y axis by 5 metres.

Run the program to see our cube take form.

See you in the next tutorial! We’ll shed some light on the situation.

Functions and Keywords used in this Tutorial

clear(), drawObjects(), loop, placeObject(), repeat, setObjectMaterial(), setCamera(), update()

625

3D Tutorial 2: Simple Lighting

In this tutorial we’ll be using the same project as the previous lesson only with an extra line.

When we begin adding light to the 3D world space, things really start to take shape.

There are four functions in FUZE4 Nintendo Switch which we can use to add light. These are:
setAmbientLight(), worldLight(), spotLight() and pointLight().

We will be using pointLight() to start with, as it’s a nice and simple one to understand.

Type, or copy and paste the following code into the FUZE4 Nintendo Switch code editor.

 1. obj = placeObject(cube, { 0, 0, 0 }, { 1, 1, 1 })
 2. setObjectMaterial(obj, red, 1, 1)
 3. setCamera({ 0, 0, 10 }, { 0, 0, 0 })
 4. pointLight({ 0, 4, 0 }, white, 100)
 5.
 6. loop
 7. clear()
 8. drawObjects()
 9. update()
 10. repeat

As you can see, the project is exactly the same but with one extra line. Here’s the line we’re talking
about:

 4. pointLight({ 0, 4, 0 }, white, 100)

pointLight()

pointLight() creates a pinpoint light in a position, which radiates outward in all directions.

Think of it like a lightbulb!

Let’s take a look at those arguments. The first one should be familiar to you by now! This is a
vector to describe the position of the light in 3D world space.

Notice that the y element of the vector is set at 4. With the camera set the way it currently is, this
means our light is positioned above the cube on the y axis.

Take a quick look at the diagram below:

626

When you run the program, you should see a nice lit surface to the top face of the cube, with the
front face slightly darker.

The second argument is of course the colour of our light. Nice and simple! This can either be a
name of a colour, or an RGBA vector

Finally, we have the light intensity. We have set this to 100 for quite a bright light with a strong
effect.

Let’s try moving the light around a little to see the effects.

Change your pointLight() line to look like this:

 4. pointLight({ 8, 4, 0 }, white, 200)

Notice we have changed the x element of the position vector to 8, meaning that from where our
camera is looking, we should see the cube illuminated from the right.

See? Let’s try it from the left, by the same amount:

 4. pointLight({ -8, 4, 0 }, white, 200)

Remember, the centre of the 3D world space is at {0, 0, 0}, so we must use a negative number if we
want to move the light to the left.

To really visualise what’s happening here, let’s add some Joy-Con control to the position of the
light on the x axis.

We’ll need to make a couple of changes to do this. In order to change the position of our light
during the loop, we must use a new function called setLightPos(). We must also use a variable to
store the position of the light on the x axis, which we’ll call x. Then it’s just a couple of simple if
statements to change the x variable and we’ll be done!

Edit your code, or copy and paste the following into the FUZE4 Nintendo Switch code editor.

627

 1. obj = placeObject(cube, { 0, 0, 0 }, { 1, 1, 1 })
 2. setObjectMaterial(obj, red, 1, 1)
 3. setCamera({ 0, 0, 10 }, { 0, 0, 0 })
 4. light = pointLight({ 0, 4, 2 }, white, 100)
 5. x = 0
 6.
 7. loop
 8. clear()
 9. j = controls(0)
 10. setLightPos(light, { x, 4, 2 })
 11. if j.left then
 11. x -= 0.2
 12. endif
 13. if j.right then
 14. x += 0.2
 15. endif
 16. drawObjects()
 17. printat(0, 0, x)
 18. update()
 19. repeat

Let’s take a quick look at that new function. First, check out the difference on line 4.

 4. light = pointLight({ 0, 4, 2 }, white, 100)

We are now using a variable to store our light. We’ve named this variable light for obvious
reasons!

Now we have a variable for our light, we can use this in the setLightPos() function.

 10. setLightPos(light, { x, 4, 2 })

As you can see, the first argument is the variable name of the light we want to move.

The second argument is a vector to describe the new position of our light.

Notice we have used the variable x in the x axis element of the vector because we want this to
change during the loop.

We have also increased the position of our light on the z axis, moving the light slightly closer to the
camera. This will make the effect of the light more visible, as it will also hit the front face of the
cube.

Finally, line 17 is a printAt() function to show us the value of our x variable.

Using the information in this tutorial, can you add directional button controls to change the
position on the z axis too?

Check out the controls() function Help Page if you need help with the names of the controls! You
can find it just here.

Functions and Keywords used in this Tutorial

628

clear(), controls(), drawObjects(), else, endIf, if, loop, placeObject(), printAt(), repeat,
setLightPos(), setObjectMaterial(), setCamera(), then, update()

629

3D Tutorial 3: Rotation

Onwards and upwards! Well… Not upwards. As you know, upwards depends on where our camera
is facing!

Before we jump into controlling a camera in 3D space, we’re going to look at something really
quite awesome which will bring our 3D project to life.

We’re back to our original cube project again! Below is the project we’ll begin with, it should look
very familiar by now!

Type, or copy and paste the following into the FUZE4 Nintendo Switch code editor.

 1. obj = placeObject(cube, { 0, 0, 0 }, { 1, 1, 1 })
 2. setObjectMaterial(obj, red, 1, 1)
 3. setCamera({ 0, 5, 10 }, { 0, 0, 0 })
 4. pointLight({ 0, 4, 0 }, white, 100)
 5.
 6. loop
 7. clear()
 8. rotateObject(obj, { 0, 1, 0 }, 1)
 9. drawObjects()
 10. update()
 11. repeat

rotateObject()

Our new line in question is line 8.

 8. rotateObject(obj, { 0, 1, 0 }, 1)

The rotateObject() function is used to rotate an object, just as the name implies!

The first argument is the name of the variable which stores our shape. Ours is called obj.

The second argument is a vector which describes the axis or axes of rotation. In our example, we
are going to rotate the cube around the y axis only, so the y element of this vector is 1, while the
rest are 0.

Lastly, we have the amount of rotation per frame of animation. This argument is an amount of
degrees. As you can see, we have used a 1 here, meaning our cube will rotate by 1 degree every
frame.

Run the program to see a lovely spinning cube.

Alright! Now we’ve got that, let’s experiment with the other axes.

To make an object rotate in the opposite way, simply use a negative number in the vector.

630

For example:

 8. rotateObject(obj, { -1, 1, 1 }, 1)

In the above, we are rotating negatively on the x axis and positively on both the y and z axes.

Rotating multiple shapes

Let’s adapt these concepts into a slightly more impressive project. We can store a number of
shapes in an array, then apply these techniques to all of them using for loops.

Type, or copy and paste the code below into the FUZE4 Nintendo Switch code editor:

 1. setCamera({ 0, 5, 20 }, { 0, 0, 0 })
 2. pointLight({ 0, 4, 4 }, white, 100)
 3.
 4. numShapes = 6
 5. array shapes[numShapes]
 6.
 7. for i = 0 to len(shapes) loop
 8. shapes[i] = placeObject(pyramid, { -numShapes - 1 + i * 3, 0, 0 }, { 1, 1, 1 })
 9. setObjectMaterial(shapes[i], fuzeblue, 0, 1)
 10. repeat
 11.
 12. loop
 13. clear()
 14.
 15. for i = 0 to len(shapes) loop
 16. rotateObject(shapes[i], { 1, 1, 1 }, 1)
 17. repeat
 18.
 19. drawObjects()
 20. update()
 21. repeat

Running this program will give us 6 spinning pyramids.

We should be familiar with the first couple of lines from the previous tutorials. Let’s go over
creating the array and populating it:

 4. numShapes = 6
 5. array shapes[numShapes]

Here we create a simple one-dimensional array, with numShapes amount of elements. To
change the number of shapes on screen, simply change the numShapes variable!

 7. for i = 0 to len(shapes) loop
 8. shapes[i] = placeObject(pyramid, { -numShapes - 1 + i * 3, 0, 0 }, { 1, 1, 1 })
 9. setObjectMaterial(shapes[i], fuzeblue, 0, 1)
 10. repeat

Here, we use a for loop to populate the array with information. We call the placeObject() and
setObjectMaterial() functions for each element of the array.

Notice the position vector on line 8: {-numShapes - 1 + i * 3, 0, 0}

631

The -numShapes - 1 + i * 3 used in the x element of the vector will position the shapes differently
depending on the number of shapes on screen.

This is designed to space 6 shapes evenly across the screen.

Next up, we have our good old clear() and update() loop, inside which is a for loop making the
magic happen.

 15. for i = 0 to len(shapes) loop
 16. rotateObject(shapes[i], { 1, 1, 1 }, 1)
 17. repeat

For each shape in our array, we call a rotateObject() function, applying 1 degree of rotation on
each axis per frame.

Using the Control Stick to Rotate an Object

Let’s adapt this project to control the rotation using our Joy-Con control stick.

To achieve this, we’ll only need a couple of extra lines, including the good old controls() function.

 1. setCamera({ 0, 5, 20 }, { 0, 0, 0 })
 2. pointLight({ 0, 4, 4 }, white, 100)
 3.
 4. numShapes = 6
 5. array shapes[numShapes]
 6.
 7. for i = 0 to len(shapes) loop
 8. shapes[i] = placeObject(pyramid, { -numShapes - 1 + i * 3, 0, 0 }, { 1, 1, 1 })
 9. setObjectMaterial(shapes[i], fuzeblue, 0, 1)
 10. repeat
 11.
 12. loop
 13. clear()
 14.
 15. j = controls(0)
 16.
 17. for i = 0 to len(shapes) loop
 18. rotateObject(shapes[i], { 0, 1, 0 }, j.lx)
 19. rotateObject(shapes[i], { 1, 0, 0 }, -j.ry)
 20. repeat
 21.
 22. drawObjects()
 23. update()
 24. repeat

Very cool!

We simply call the controls() function, assign the result to a variable, then use the j.lx and j.ry
values in our degrees of rotation argument.

Can you add a way of manually rotating the shapes on the z axis?

See you in the next tutorial where we’ll be looking at creating camera controls!

Functions and Keywords used in this Tutorial

632

array, clear(), controls(), drawObjects(), loop, placeObject(), pointLight(), repeat, rotateObject(),
setOBjectMaterial(), setCamera(), update()

633

3D Tutorial 4: Camera Movement

Welcome to the last of the 3D project tutorials!

In this tutorial, we’ll be looking at creating a controlled camera in a few different styles. We’ll
begin very simple, as always. Let’s just get some camera movement going.

You know the drill, type or copy and paste the following project into the FUZE4 Nintendo Switch
code editor.

 1. obj = placeObject(cube, { 0, 5, 0 }, { 1.5, 4, 0.5 })
 2. flr = placeObject(cube, { 0, 0, 0 }, { 10, 0.1, 10 })
 3.
 4. setObjectMaterial(obj, grey, 0, 1)
 5. setObjectMaterial(flr, bisque, 0, 1)
 6.
 7. pointShadowLight({ 0, 7, 3 }, white, 10, 1024)
 8.
 9. loop
 10. clear()
 11.
 12. j = controls(0)
 13.
 14. camPos = { j.lx * 20, j.ly * 20, 20 }
 15. setCamera(camPos, { 0, 0, 0 })
 16.
 17. drawObjects()
 18. update()
 19. repeat

Run the program to see our rather strange scene. Move the left Joy-Con control stick around to
change the camera angle.

As you can see, at the start of the program we’re creating a simple 3D world using two objects. We
have two cubes with unequal dimensions.

 1. obj = placeObject(cube, { 0 , 5, 0 }, { 1.5, 4, 0.5 })
 2. flr = placeObject(cube, { 0, 0, 0 }, { 10, 0.1, 10 })

Our first cube (the floating one) is stored in the variable called obj and the flat cube object is
stored in the variable called flr.

The material we use for both objects is the same as we have used previously, so no need to go into
detail there!

On line 7 we have our pointShadowLight() function to cast some lovely shadows on the floor. Our
light is positioned at {0, 7, 3}, which is 7 metres above the centre point on the y axis, and 3 metres
towards the camera on the z axis.

634

Let’s take a look at those camera controls.

First of all, since we’ll be using the Joy-Con controls, we’ll need to call the controls() function and
assign it to a variable:

 12. j = controls(0)

In this example, we’ve called that variable j. Nice and simple! Alright, on to the camera:

 14. camPos = { j.lx * 10, j.ly * 10, 20 }
 15. setCamera(camPos, { 0, 0, 0 })

This time around we are calling the setCamera() function within our main loop. This means our
program will reset the camera position every frame.

In order to change the camera position during the loop, we must store the camera position in a
variable. On line 14, we create a variable called camPos which stores a position vector. Notice
that in the x and y elements of the vector we have used our controls variable to access the left
Joy-Con control stick x and y positions. We multiply the result of this by 10 to give an increased
effect.

This means our left stick now controls the x and y axis of the camera position!

You might also notice that in the setCamera() function, our second argument for the camera
direction is always { 0, 0, 0 }. The effect of this is that no matter where we move the camera, it will
always be pointing at the centre of our 3D world space.

As always, try changing some of these values to see the effect it has on the program!

Making a First-Person Camera

Let’s go through the process of creating a real first person camera control. We need to be able to
move freely, turning the camera to point at whatever we want.

This is actually more complicated than it might sound, so get ready for some serious code!

The end result of this project will be usable in any game you might want to create, so feel free to
take it for your own projects!

Our first task will be to make proper use of the right Joy-Con control stick so that we can look
around freely.

Here’s the full program below. Type or copy and paste it into the FUZE4 Nintendo Switch code
editor.

 1. obj = placeObject(cube, { 0, 5, 0 }, { 1.5, 4, 0.5 })
 2. flr = placeObject(cube, { 0, 0, 0 }, { 10, 0.1, 10 })
 3.
 4. setObjectMaterial(obj, grey, 0, 1)
 5. setObjectMaterial(flr, bisque, 0, 1)
 6.
 7. pointShadowLight({ 0, 8, 2 }, white, 10, 1024)

635

 8.
 9. camPos = { 0, 5, 20 }
 10. angle = -90
 11.
 12. loop
 13. clear()
 14. j = controls(0)
 15.
 16. angle += j.rx / 4
 17. fwd = { cos(angle), 0, sin(angle) }
 18. target = camPos + fwd
 19. setCamera(camPos, target)
 20.
 21. drawObjects()
 22. update()
 23. repeat

As you can see, our first section of code is exactly the same as the previous one. We are creating
our little 3D world of two cubes with the same material. We have our same light placement too.

 9. camPos = { 0, 5, 20 }

Our camera position begins at the vector stored in the camPos variable.

Let’s talk about the new addition to the first section, the angle variable.

 10. angle = -90

Our angle variable will be used to calculate which direction we are looking. We begin at -90. This
number is important because of the way we will use the sin() and cos() functions shortly.

Let’s jump ahead a little to line 16 in our main loop.

 16. angle += j.rx

This is where we modify the angle variable. We add the current value of the the right control stick
(j.rx) to the variable. Notice that we are only using the x axis of the right Joystick for now. We will
begin by looking left and right, up and down can come later!

Now, what are we doing with that variable?

 17. fwd = { cos(angle), 0, sin(angle) }

This complex looking bit of code needs some explaining.

We are creating something called a forward vector. This is a special type of directional vector
which tells us which direction is forwards, hence the name!

We are using the sin() and cos() functions to calculate the direction we want the camera to point
based on the value of the angle variable.

As we change the position of the right Joy-Con control stick, the value of the angle variable
changes, and the calculation on line 17 gives us a different result.

636

Notice that the y element of our forward vector is at 0 for now. This will change when we add the
ability to look up and down.

Still with us? Well done!

 19. target = camPos + fwd
 20. setCamera(camPos, target)

Here we create a new variable called target. This variable is used in the setCamera() function on
line 19. Rather than having a fixed target like before (which was { 0, 0, 0 } if you remember), we
are constantly recalculating the target by adding the forward vector to the current camera
position and setting it as the new target.

Once we’ve done that, we call the drawObjects() and update() functions as usual, then close the
loop.

Run the program! Your right control stick will now move the camera direction left and right. If
that’s all working nicely, let’s move on to vertical movement!

Vertical Camera Movement

In order to add vertical camera movement to our project, we actually only need a couple of lines.
Take a look at the lines below and add them at the designated line numbers.

First we’ll need a variable to store the vertical angle of the camera. We’ll call this lookHeight. It
must be defined outside of the main loop:

 11. lookHeight = 0

Now we need to modify this variable inside the main loop using the right control stick:

 18. lookHeight += j.ry / 50

We have divided the result of the right control stick by 50 to give a more manageable movement
speed.

Lastly, we must use this variable in the calculation of our foward vector:

 19. fwd = { cos(angle), lookHeight, sin(angle) }

Alright! Let’s take a look at the program in full so far:

 1. obj = placeObject(cube, { 0, 5, 0 }, { 1.5, 4, 0.5 })
 2. flr = placeObject(cube, { 0, 0, 0 }, { 10, 0.1, 10 })
 3.
 4. setObjectMaterial(obj, grey, 0, 1)
 5. setObjectMaterial(flr, bisque, 0, 1)
 6.
 7. pointShadowLight({ 0, 7, 3 }, white, 30, 1024)
 8.
 9. camPos = { 0, 5, 20 }
 10. angle = -90
 11. lookHeight = 0
 12.

637

 13. loop
 14. clear()
 15. j = controls(0)
 16.
 17. angle += j.rx
 18. lookHeight += j.ry / 50
 19. fwd = { cos(angle), lookHeight, sin(angle) }
 20. target = camPos + fwd
 21. setCamera(camPos, target)
 22.
 23. drawObjects()
 24. update()
 25. repeat

Run the program and use the right control stick to look around freely!

Adding Walking Movement

Make sure our projects are matching and we’ll add the last section of code. We need to be able to
walk around!

To be able to walk around with the left control stick, we only need to add three lines of code. They
must be placed between the fwd = {cos(angle), lookHeight, sin(angle)} and target += camPos +
fwd lines. Let’s go through them:

 20. side = cross(fwd, { 0, 1, 0 })
 21. camPos += side * j.lx / 4

These two lines of code allow us to move left and right using the left control stick.

We create a variable called side which stores the result of a calculation called the cross product.
The cross() function takes two vectors and gives an angle perpendicular to both. Notice we are
using our forward vector and a vector of {0, 1, 0} which is directly upward. The angle
perpendicular to these is horizontally across the x axis!

We then add the result of this calculation to our camPos variable multiplied by the left control
stick x axis value, allowing us to move freely along the x axis, always keeping our camera pointed
towards where we want.

Let’s add the line to allow us to move along the z axis:

 22. camPos += normalize({ fwd.x, 0, fwd.z }) * j.ly / 4

Since we only want to move along the ground rather than flying, we must normalize the vector
and remove the y component. We then increase the camPos variable by this result, multiplied by
our left control stick y axis value. Again, we divide by 4 to create a more manageable movement
speed.

Let’s take a last look at the whole project including these changes for reference:

 1. obj = placeObject(cube, { 0, 5, 0 }, { 1.5, 4, 0.5 })
 2. flr = placeObject(cube, { 0, 0, 0 }, { 10, 0.1, 10 })
 3.

638

 4. setObjectMaterial(obj, grey, 0, 1)
 5. setObjectMaterial(flr, bisque, 0, 1)
 6.
 7. pointShadowLight({ 0, 7, 3 }, white, 30, 1024)
 8.
 9. camPos = { 0, 5, 20 }
 10. angle = -90
 11. lookHeight = 0
 12.
 13. loop
 14. clear()
 15. j = controls(0)
 16.
 17. angle += j.rx
 18. lookHeight += j.ry / 50
 19. fwd = { cos(angle), lookHeight, sin(angle) }
 20. side = cross(fwd, { 0, 1, 0 })
 21. camPos += side * j.lx / 4
 22. camPos += normalize({ fwd.x, 0, fwd.z }) * j.ly / 4
 23. target = camPos + fwd
 24. setCamera(camPos, target)
 25.
 26. drawObjects()
 27. update()
 28. repeat

If you’d like to fly around in your 3D scene, it’s actually a little simpler!

 22. camPos += fwd * j.ly / 4

Simple as that! We do not remove the y component of the vector and therefore do not need to
normalize. Simply add the whole fwd vector to the camera position.

Run the program and take a walk around! Congratulations, you’ve programmed a first-person
camera!

Why not build the scene into something more exciting? Use more placeObject() functions just as
we did at the start to create more objects, then the drawObjects() function will take care of the
rest!

Well done. You’ve complete the 3D Tutorials!

Functions and Keywords Used in this Tutorial

clear(), cos(), cross(), drawObjects(), loop, normalize(), placeObject(), pointShadowLight(), repeat,
setCamera(), setObjectMaterial(), sin(), update()

639

Basic Game Tutorial: 0 - Introduction

Hello again!

In these tutorials, we’ll be covering how to begin making your very own game.

It is strongly recommended that you have completed at least the first 5 regular tutorials before
going into this project. We’ll be using concepts which might seem a little tricky for an absolute
beginner. If you’re happy with loops, variables, if statements, arrays, for loops, functions,
structures and how the screen works, then carry on!

In the tutorials so far, we’ve been using basic shapes to illustrate the core concepts of
programming. Here, we’ll be stepping things up a notch and using a small selection of the vast
amount of assets FUZE4 Nintendo Switch has to offer.

Before we get started, let’s quickly outline the basic steps we’ll be taking in the upcoming parts to
this project.

Part 1 - Drawing the Background

In the first part of the Basic Game Tutorial, we’ll be covering how to draw a background image to
the screen, how to make the game switch correctly between docked and undocked modes, and how
to create the beginning of a 2D camera.

Part 2 - Creating a Level

In the second part, we’ll be covering how to use the drawSheet() function to access a tilesheet to
design and draw a level of your very own to the screen.

Part 3 - Drawing and Animating the Player

In part 3, we’ll be using the drawSheet() function once again to draw and animate the player. This
tutorial will introduce the concept of a state machine to keep track of the player characters current
state.

Part 4 - Collision

In order to move around on our level, jump onto platforms and tragically fall down the gaps, we
need to interact with our level. In part 4, we’ll cover how to make the player character interact
with the level we’ve created.

Part 5 - Movement

Once our character interacts with the level properly, we will cover adding movement controls to
the game, with the ability to walk and jump.

640

Part 6 - Items

Now that we’ve got the foundations ready, we can start adding some simple items to the game!

Part 7 - Enemies

Finally, we’ll be adding a simple slime enemy to our platformer. We will learn how to make
enemies move around on platforms, how to animate them and most importantly, how to jump on
them!

Part 8 - Customise

Now our game is complete! Or is it? It’s up to you now to take this project as far as you like! Use
this part of the project to see how to add your own ideas to the game.

Let’s go!

Now we’ve outlined the structure of what we’ll be learning and why, let’s dive straight in to the
first part. See you there!

641

Basic Game Tutorial 1: Drawing the Background

Hello! We meet again. In this part of the Game Tutorial, we’ll be drawing a background image on
screen. To achieve this, we’ll be using a couple of techniques which are vital to learn for creating
your own games.

By completing this tutorial, you will have learned a solid foundation to start creating your own
games. Once you’ve got your head around this, you should try to do the same with different FUZE4

Nintendo Switch assets!

Creating the Image File

Let’s get straight into this. In order to draw a background image on screen, we’ll need a
background image! Open a new project file and enter the single line of code below:

 1. background = loadImage("Kenney/backgrounds", false)

There we have it! We have created a variable called background which stores the image file we
want. We’ve used the loadImage() function to do this, which has two arguments. The first is the
location and name of the image file in speech marks. The second is a true or false switch for a
filter. We will not be using a filter on our graphics, so this is set to false.

Now we’ve done this, we can freely use the variable called background in our program if we want
to use the background image.

Setting up Camera Variables

In platform games, we usually have a background image and level which is larger than the screen.
As we move our character along the level, the screen moves with us, scrolling the background and
level to the left.

Take a look at the image below to help picture this in your mind:

642

As you can see, we have a background image which is larger than the console screen.

If we were to move our camera (the screen) along, the background image would appear to be
moving to the left:

In fact, our background image is not moving, but our camera (screen) is!

Let’s take a look at the first picture again, but with some coordinates. Imagine we want to draw
the background image using x and y coordinates. We know the top left hand corner of the screen
is 0 on the x axis, and 0 on the y axis. So our coordinates for drawing the background on screen
would be (0, 0):

All good?

Let’s say we move the camera (screen) 200 pixels to the right. To make our background image
move in the opposite direction by the same amount, we must now draw it at (-200, 0):

643

If we want this to change while the program is running, we must use variables to store the
camera position.

With that explained, we can add two variables to our program. Make the following changes to
your code:

 1. background = loadImage("Kenney/backgrounds", false)
 2.
 3. screenX = 0
 4. screenY = 0

There we go! We will use these variables when it’s time to draw the background on screen.

Main Game Loop

Let’s start our main game loop.

As we know, all games must use a loop which clears and updates the screen for us to see
movement. Let’s begin with that. Add the following lines to your program:

 1. background = loadImage("Kenney/backgrounds", false)
 2.
 3. screenX = 0
 4. screenY = 0
 5.
 6. loop
 7. clear()
 8.
 9. update()
 10. repeat

Simple enough! Our loop doesn’t do anything just yet, other than clearing and updating the screen,
but this is where we must start when writing a visual program with animation.

Anything we want to happen during our game must now be added to the main loop.

644

Dynamic Scaling

Wow that’s a tricky couple of words… What does it mean?

Well, your Nintendo Switch is very clever. When you put the console in the dock, it displays on
whatever TV screen you might have it plugged into.

In the screen tutorial project, we mentioned that the console’s screen is 1280 pixels on the x axis,
and 720 on the y axis. We can access the width and height of the screen with the gwidth() and
gheight() functions.

Those numbers might change when we put the console into the dock and display it on a TV screen.

Whilst we are making our game project, we want to be able to detect the width and height of
screen while the game is running. This way, we can freely use the console in handheld or docked
mode, and the game will automatically scale our graphics to look awesome no matter what!

To achieve this, we will create two variables inside the main game loop. Add the following
changes to your code:

 1. background = loadImage("Kenney/backgrounds", false)
 2.
 3. screenX = 0
 4. screenY = 0
 5.
 6. loop
 7. clear()
 8.
 9. screenW = gwidth()
 10. screenH = gheight()
 11.
 12. update()
 13. repeat

There we go!

No we have all the information we could ever need for our screen. We have a screen position in
the screenX and screenY variables, and screen dimensions stored in the screenW and screenH
variables!

All that’s left is to draw the background image!

Drawing the Background Image

It might seem like an awful lot of setting up just to draw an image on screen, but doing things this
way will mean we won’t have to come back and make lots of changes later. This way, we can move
forward and our brilliant program will take care of everything for us.

All we need now is one line of code to draw the background image. Add the following change to
your code:

 1. background = loadImage("Kenney/backgrounds", false)
 2.

645

 3. screenX = 0
 4. screenY = 0
 5.
 6. loop
 7. clear()
 8.
 9. screenW = gwidth()
 10. screenH = gheight()
 11.
 12. drawImage(background, -screenX, -screenY)
 11.
 12. update()
 13. repeat

We use the drawImage() function to draw the image stored in the background variable to the x
and y positions stored in screenX and screenY.

We use minus in front of the x and y positions so that our background moves to the left by the
same amount that our screen moves to the right. Now we can freely move the screen any amount
in any direction and our background will always move correctly!

Scaling the Background Image

Run the program to see the background image.

Ah… It appears we have a problem…

Right now, our background looks like this:

But it should look like this:

646

Our background image is quite tall. Much taller than our screen is. Because of this, we won’t see
our image properly. We must use a secret extra feature of the drawImage() function. It’s an extra
argument for the scale of the image.

We need to scale our image depending on the height of the screen.

If we divide the size of the screen by the height of the image, we will get our exact number to scale
by.

We have a very clever function to find the size of an image, it’s called imageSize()!

When we put an image in the brackets of the imageSize() function, we can access the width or
height of that image with .x and .y.

With this in mind, let’s make the last change to our drawImage() line:

 1. background = loadImage("Kenney/backgrounds", false)
 2.
 3. screenX = 0
 4. screenY = 0
 5.
 6. loop
 7. clear()
 8.
 9. screenW = gwidth()
 10. screenH = gheight()
 11.
 12. drawImage(background, -screenX, -screenY, screenH / imageSize(background).y)
 11.
 12. update()
 13. repeat

Notice that our drawImage() line now has an extra argument for a total of three. The scale
argument reads: screenH / imageSize(background).y. This takes the height of the screen stored in
the screenH variable and divides it by the height of the background image. We then use this result
as a scale to multiply the background image size, giving us a perfectly fitting image no matter what
screen we are using! Neat!

647

End Result

Before we move on to the next part of our Game Tutorial project, let’s double check that we have
everything correct so far. Your program should look exactly like this:

 1. background = loadImage("Kenney/backgrounds", false)
 2.
 3. screenX = 0
 4. screenY = 0
 5.
 6. loop
 7. clear()
 8.
 9. screenW = gwidth()
 10. screenH = gheight()
 11.
 12. drawImage(background, -screenX, -screenY, screenH / imageSize(background).y)
 11.
 12. update()
 13. repeat

When we run the program, we will just see the background image on screen in the correct
dimensions. It should look something like this:

If this is how your screen looks too, awesome! We’re ready to take the next step.

Functions and Keywords used in this tutorial

clear(), drawImage(), gHeight(), gWidth(), loadImage(), loop, repeat, update()

648

Basic Game Tutorial 2: Creating a Level

Hello again! Glad to see you haven’t given up yet!

We’ve got our background image, now it’s time to create a level for our platform game. Before we
go adding all kinds of complicated things, let’s focus on just the basics.

Using a Tilesheet

We want a level to have something to walk on, some pits to fall into, and perhaps a couple of
platforms for us to jump on.

When game designers create a level, they use something called a tileset or tilesheet. This is an
image file which contains lots of different tiles - the building blocks for a level. We’ll be using more
of Kenney’s awesome artwork for our level. Take a look at the image of a portion of the tilesheet
we’ll be using below:

Wow! As you can see, this tilesheet contains all of the building blocks we would need for a level.
We even have lots of different themes in the same sheet! This means you could add some very
different sections to your game once we’re finished!

The important thing to understand here is that each tile has a number. Let’s take a closer look at a
couple of those tiles from the top left corner.

The tile numbers begin at 0 and move up as we go. Imagine a grid around each tile in the tilesheet
to help picture this.

The tiles we will be using to draw the level are:

649

We have 5 tiles, each with different numbers. We need to use an array to arrange these tiles into
the level we want, but before we do that, we can make our lives a little easier by storing these tiles
into an array.

Enough talk, let’s get started!

Loading the Tilesheet Image

Just like before, we need to use the loadImage() function to load and store the tilesheet in a
variable. We’ll be doing this right at the start of our program. Below, we’ve added a new line on
line 2. Add this to your code:

 2. tilesheet = loadImage("Kenney/superPlatformPack", false)

We define a variable called tilesheet and use the loadImage() function to store the tilesheet.
Again, we want no filter applied to this so the second argument is false.

Done!

Creating a Look-Up Table

Earlier, we mentioned that we could make things easier for ourselves by storing all the tiles we
want in a simple array. Then, when we create our level array, rather than having a huge amount
of 3 digit numbers all over the place, we will have nice single digit numbers instead.

An array used in this way is called a look-up table. It’s a table that we use to look things up!

Let’s create that look-up table now. We’ll call it tiles.

We’ll add this on line 7. Here’s how the first part of your project should look:

 1. background = loadImage("Kenney/backgrounds", false)
 2. tilesheet = loadImage("Kenney/superPlatformPack", false)
 3.
 4. screenX = 0
 5. screenY = 0
 6.
 7. tiles = [121, 138, 128, 129, 130]

That’s it! We’ve stored the numbers for the tiles we want in a simple array.

With this, we can easily access any tile number from the table, and changing the tiles later will be a
breeze!

650

If we wanted to use tile number 121, we would access that with tiles[0]. If we wanted tile number
130 we would use tiles[4].

Building the Level using a Multi-Dimensional Array

We are going to create a level using numbers. Imagine creating a large grid as big as the screen,
then filling in the squares with the numbers of the tiles we want to place there.

Something a little like this:

We will also have to fill in all of the blank spaces with a number we can use to determine they are
empty. We will use -1 for this. This -1 will come in very useful for a few things later.

Rather than having a huge array full of -1’s, let’s use half of this grid instead to make our code
more readable. We can then use an offset when the time comes to draw the level.

Confused? Here’s what we’re trying to create:

651

Almost every old 2D game works in this way. You can imagine any 2D level as a grid of numbers,
each number representing a different tile to draw.

With -1’s in all the empty tiles, we have an easy way to tell if any particular tile is something we
want to draw. It will also be used when the time comes to collide with the level, checking to see if a
tile is empty and can be moved through.

Anyway, let’s get back to some coding and create our array! It is probably a good idea to copy and
paste this section of code into your project. Entering this whole array manually is quite long-
winded!

 9. level = [
 10. [-1, -1],
 11. [-1, -1],
 12. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
 13. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 14. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 15. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 16.]

There we go! It’s very easy to get confused by such a huge amount of numbers, but now we know
exactly what they are for. You can almost see the level in the numbers!

Think of this array as 6 rows of 26 columns. This will help to understand things when we come to
drawing the level.

You might notice our array is longer than the example picture. That’s as it should be! We want our
level to be longer than the screen, when we move forward in the game, the rest of the level will be
revealed to us!

Before we go ahead and draw the level in our main loop, we need to set up a couple of very helpful
variables. They will store the total number of tiles in the height of the screen, and the offset we
will use when drawing our level. Add the following two lines to your code:

652

 18. levelHeight = 12
 19. levelOffset = levelHeight - len(level)

Our screen will be 12 tiles tall, so levelHeight is 12. Our level array is only 6 rows high, so without
an offset this will result in something not quite right when we draw it. You’ll see!

To store the correct offset, we take the levelHeight variable and subtract the number of rows in
our level array. Rather than use the number 6, we have used the len() function. This means we
can add more to the level later and everything will be taken care of!

Another very useful thing to have would be a variable to store the size of a single tile in pixels.
We’ll be using this all over the place in the program, so we should make it a global variable
(outside of any loops or functions so it can be accessed from anywhere in the program.). Because
the size of one tile in pixels will depend on whether the console is docked or undocked, we must
update this variable in the main loop. For now, we can simply define it as 0.

 20. tSize = 0

Alright, enough of that. Let’s draw this level. This next part will take place inside the main game
loop. To begin with, we must create a variable to store the scale multiplier for drawing to the
screen. The actual size of the tiles from our sheet are very small indeed! If we want them to look
good on screen, we must multiply their size by a scale.

This scale variable will be used again and again throughout our program:

 22. loop
 23. clear()
 24.
 25. screenW = gwidth()
 26. screenH = gheight()
 27. scale = screenH / (tileSize(tilesheet, 121).y * levelHeight)
 28.
 29. drawImage(background, -screenX, -screenY, screenH / imageSize(background).y)
 30.
 31. update()
 32. repeat

We create the scale variable on line 27 above. To calculate the scale, we take the height of the
screen in pixels (screenH) and divide it by the height of a level tile (tileSize(tilesheet, 121)).
This tells us how many single tiles will fit into the height of the screen. We then multiply the result
by our desired level height.

Now let’s use that scale to update the tSize variable, giving us the size of our scaled up tiles in
pixels:

 22. loop
 23. clear()
 24.
 25. screenW = gwidth()
 26. screenH = gheight()
 27. scale = screenH / (tileSize(tilesheet, 121).y * levelHeight)
 28. tSize = scale * tileSize(tilesheet, 121).y
 29.
 30. drawImage(background, -screenX, -screenY, screenH / imageSize(background).y)
 31.

653

 32. update()
 33. repeat

On line 28 above we multiply the original size of a level tile (tileSize(tilesheet, 121) by our scale
variable to give us the exact height of a scaled-up tile. Very useful indeed!

Drawing the Level Using a For Loop

Here is the clever part. Rather than using a different drawSheet() function for each tile, we will
use a for loop to count over the level array and call the drawSheet() function for each number.

Since we are using a two-dimensional array, we need something fancy called a nested for loop. It’s
really just a for loop inside a for loop!

Add the lines 32 to 40 below to your project:

 22. loop
 23. clear()
 24.
 25. screenW = gwidth()
 26. screenH = gheight()
 27. scale = screenH / (tileSize(tilesheet, 121).y * levelHeight)
 28. tSize = scale * tileSize(tilesheet, 121).y
 29.
 30. drawImage(background, -screenX, -screenY, screenH / imageSize(background).y)
 31.
 32. for row = 0 to len(level) loop
 33. for col = 0 to len(level[0]) loop
 34. if level[row][col] >= 0 then
 35. x = col * tsize
 36. y = (row + levelOffset) * tsize
 37. drawSheet(tilesheet, tiles[level[row][col]], x, y, scale)
 38. endif
 39. repeat
 40. repeat
 41.
 42. update()
 43. repeat

drawSheet()

The drawSheet() function is something we will be using a lot, so it’s very useful to fully
understand it. Let’s just quickly cover what the arguments are:

drawSheet(file, tile, xPosition, yPosition, scale)

The first argument is the file we want to draw from.

The second is the tile number we want to draw.

Next, we have the x and y screen positions we want to draw to.

Last is the scale multiplier applied to the tile drawn.

654

The For Loop

Let’s take a closer look at that for loop to really understand what’s happening.

 32. for row = 0 to len(level) loop
 33. for col = to len(level[0]) loop
 34. if level[row][col] >= 0 then
 35. x = col * tsize
 36. y = (row + levelOffset) * tsize
 37. drawSheet(tilesheet, tiles[level[row][col]], x, y, scale)
 38. endif
 39. repeat
 40. repeat

In these loops we create two variables called row and col, to count rows and columns. They count
from 0 to the length of the dimensions of our level array. Our level array is 6 rows of 26 columns.

The inside for loop (lines 33 to 39) count over each column, for a total of 26 repetitions. The
outside for loop counts over each row, for a total of 6 repetitions. This covers every single
position in our level array, no matter how long we make it.

For each repetition, we check if the position in the level array which corresponds to the number in
the row and col variables is greater than or equal to 0. If it is, we use the drawSheet() function to
draw the tile from the tiles array on screen.

Let’s look at an example. Imagine that row = 4 and col = 9.

The if statement on line 34 would read:

 34. if level[4][9] >= 0 then

If we take a look at our level array, we can see that column 9 of row 4 is a 0. This is indeed greater
than or equal to 0! So, with that check complete, let’s put those values into the drawSheet() line:

 37. drawSheet(tilesheet, tiles[level[9][4]], x, y, scale)

We know that level[9][4] is a 0, so really the line looks like this:

drawSheet(tilesheet, tiles[0], x, y, scale)

Looking at our tiles array, we can see that tiles[0] is the number 121. So really, the line looks like
this:

drawSheet(tilesheet, 121, x, y, scale)

This drawSheet() function is repeated for a total of 156 times! Each time, the values in the
function are different, drawing the correct tile from our array at the correct positions.

End Result

Congratulations! You’ve made it to the end of part 2 of the basic game tutorial. We should have our
level being drawn beautifully on the screen. Try putting your Nintendo Switch into the dock while

655

connected to a TV screen, you’ll see our program scales the level and background perfectly to look
awesome no matter what screen we use!

Just to double check, your entire program should now look like this:

 1. background = loadImage("Kenney/backgrounds", false)
 2. tilesheet = loadImage("Kenney/superPlatformPack", false)
 3.
 4. screenX = 0
 5. screenY = 0
 6.
 7. tiles = [121, 138, 128, 129, 130]
 8.
 9. level = [
 10. [-1, -1],
 11. [-1, -1],
 12. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
 13. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 14. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 15. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 16.]
 17.
 18. levelHeight = 12
 19. levelOffset = levelHeight - len(level)
 20. tSize = 0
 21.
 22. loop
 23. clear()
 24.
 25. screenW = gwidth()
 26. screenH = gheight()
 27. scale = screenH / (tileSize(tilesheet, 121).y * levelHeight)
 28. tSize = scale * tileSize(tilesheet, 121).y
 29.
 30. drawImage(background, -screenX, -screenY, screenH / imageSize(background).y)
 31.
 32. for row = 0 to len(level) loop
 33. for col = 0 to len(level[0]) loop
 34. if level[row][col] >= 0 then
 35. x = col * tsize
 36. y = (row + levelOffset) * tsize
 37. drawSheet(tilesheet, tiles[level[row][col]], x, y, scale)
 38. endif
 39. repeat
 40. repeat
 41.
 42. update()
 43. repeat

Make sure we’re matching up to your project perfectly, and then we’ll see you in the next tutorial.
Let’s put our character on the screen!

Functions and Keywords used in this tutorial

clear(), drawImage(), else, endIf, for, gHeight(), gWidth(), if, len(), loadImage(), loop, repeat,
tileSize(), then, to, update()

656

Basic Game Tutorial 3: The Character

Alright! Here we go.

It’s time to bring this game project to life with a character. In this tutorial, we’ll be putting our
character on screen and making it interact with the level. We want it to walk on the platforms and
fall off the edges!

Setup

Before we get our character on screen, we need to do some setup. First, we must load a the
character tilesheet:

 1. background = loadImage("Kenney/backgrounds", false)
 2. tilesheet = loadImage("Kenney/extraPlatformPack", false)
 3. chrSheet = loadImage("Kenney/characters", false)

We’re using the name chrSheet for the variable which stores the image we need.

Now let’s create some player position variables:

 5. playerX = 0
 6. playerY = 0

Nice and simple. We’ll begin with our character being drawn at the very top left of the screen.

Let’s use these variables in a drawSheet() function to actually get our player character appearing
on screen.

We’ll be adding this line just before the update() function in our main game loop on line 46:

 46. drawSheet(chrSheet, 96, playerX, playerY, scale)

Run your program and we should see our character sitting comfortably in the top left of the
screen.

Okay! We’re done. Enjoy your new game.

Just kidding. There’s lots more to do.

First of all let’s address a slight problem. Our character tile is a different size to the level building
tiles. Because of this, just like our tSize variable, we’ll need a player size variable to make things
easier for us later.

Add the following line to your code, just beneath the tSize variable in the main loop:

 33. pSize = tileSize(chrSheet, 96) * scale

657

Just like with the tSize variable, we take the tile size of the character tile and multiply it by the
scale variable.

Alright, let’s move on!

If our game is going to be playable, we need our character to fall until he lands safely on the
ground. When he’s standing on a platform, he should not fall.

Achieving this is actually quite tricky. However, once complete, we will be able to freely create
new parts to the level and it will work just fine!

Gravity and Velocity

You might have noticed that on Earth, when we jump into the air, we unfortunately come back
down again. This is because of a rather inconvenient thing called gravity.

When we are in the air, gravity pulls us towards the centre of the Earth. Thankfully, there is some
nice solid ground in the way to stop us going too far.

Velocity is the speed of an object in a direction.

Let’s say we drop a stone from the top of a building. The force of gravity is making the stone move
faster and faster towards the ground. This is called increasing in velocity.

When the stone reaches the ground, its velocity becomes 0. It has stopped. However, gravity has
not changed.

We can simulate the effects of gravity and velocity in our game code and achieve some awesome
things.

Let’s create the variables we’ll use for these effects:

 8. gravity = 1
 9. velocity = 0

Done! Now let’s use these variables to affect the player. We need to add these next two lines just
before the drawSheet() function used to draw the player. To make sure you’ve got it right, we’ll
show the end of the main loop too:

 50. velocity += gravity
 51. playerY += velocity
 52.
 53. drawSheet(chrSheet, 96, playerX, playerY, scale)
 54.
 55. update()
 56. repeat

Run the program to see our character plummet straight past the screen! Excellent!

Okay… So we have gravity. Now let’s work on actually making a working floor. Before we explain
how this works, we need to delete a line of code. Line 51 to be precise. Take a look at how lines 50
onward should look:

658

 50. velocity += gravity
 51.
 52. drawSheet(chrSheet, 96, playerX, playerY, scale)
 53.
 54. update()
 55. repeat

We do not always want our character’s y position to be affected by the velocity variable all the
time, only when there is no ground beneath them.

What exactly do we mean by ground anyway?

Going from Pixel Co-ordinates to Array Co-ordinates

What we need to do is quite complicated, so strap your focusing hats on.

We need to map our level array on to the screen so that it fits correctly in the tiles.

We must check the tile beneath the player to see if it is empty in the level array. As long as we
have an empty tile beneath us, our y. position should be affected by velocity.

Let’s return to our picture for a minute to illustrate what we mean:

See our cute character on the left side of the level? In the picture, he is above a tile indexed by the
number 1. We want him not to fall unless he is above a -1 tile.

But how do we go from pixel co-ordinates to the co-ordinates of our array?

With maths! Hurray…

In all seriousness, this is an incredibly useful technique to learn - with it, you’ll be able to create
any 2D game with much more confidence.

659

Figuring out the surrounding tiles is something we’ll want to do quite a bit in our project. Not just
for falling, but for moving left and right and to interact with items too.

It’s the perfect time to write our very own function to to do just that!

A function which does this needs to be given an x and y position to calculate from. We will pass
these to the function as variables.

Remember, we write custom functions at the very end of our program:

 57. function collision(x, y)
 58. tileX = int(x / tSize)
 59. tileY = int(y / tSize) - levelOffset
 60.
 61. result = true
 62.
 63. if tileY < 0 or tileY >= len(level) or tileX < 0 or tileX >= len(level[0]) then
 64. result = false
 65. else
 66. if level[tileY][tileX] < 0 then
 67. result = false
 68. endif
 69. endif
 70. return result

Now that’s a scary bit of code right there! This function receives an x and a y position of the
screen, converts them into array co-ordinates and finally tells us whether the tile at our x and y
position is something to collide with (> 0) or not (< 0).

Remember, the tiles in our level array are empty if they are a -1. It tells us this with a single true
or false variable called result. We can use this function to check if a tile is not a collision tile with
a statement like:

if !collision(playerX, playerY) then

(Remember, ! means not)

Here’s how the function works:

First, we receive an x and y position. We then create two local variables called tileX and tileY
which will be our array co-ordinates.

 58. tileX = int(x / tSize)
 59. tileY = int(y / tSize) - levelOffset

We take the x and y positions passed to the function and divide them by the tSize variable to give
us the tile coordinates.

We must use the int() function when we do this because we’re looking for a whole number. If our
result was a decimal, it would not work properly when used as an index into the level array.

For example, imagine our character is at the screen co-ordinates (450, 560).

We take 450 and divide it by the tSize variable. When undocked, the tSize variable is 60. 450
divided by 60 is 7.5. With the int() function, this becomes the number 7. So, our tileX variable
now holds a 7!

660

Doing the same with the y position gives us a result of 9. We subtract the levelOffset variable and
this gives us a 3. So tileY now stores a 3!

This operation tells us any grid position from any pair of screen co-ordinates. Now let’s put those
tileX and tileY variables to work.

The next part is a little tricky. First, we create the variable which will tell us whether the tile we
are checking is solid (true) or empty (false). The variable is called result and at first it simply
stores true.

 61. result = true

Next, we check if the tile in question is actually in the range of our level array. We must do this
because if our character falls down a pit, or walks somewhere on screen where there is no tile data
in the level array, we will get an out of bounds error. This is because the system is trying to check
for a place in the level array which does not exist.

To solve this, we use an if statement which checks whether the tileX or tileY variables are in the
correct range. If they are not, we simply make our result variable false to indicate that we will
not collide with the tile in question.

 63. if tileY < 0 or tileY >= len(level) or tileX < 0 or tileX >= len(level[0]) then
 64. result = false
 65. else
 66. if level[tileY][tileX] < 0 then
 67. result = false
 68. endif
 69. endif
 70. return result

If it is in range, we check if that position in the array is solid or empty, then make the result
variable true or false accordingly.

Using our Collision Function in the Program

Time to put this function to good use. We want to apply the gravity effect to our player only if the
tile underneath them is empty.

Let’s write this into our code. We’re looking at lines 52 to 57 below:

 52. if !collision(playerY + pSize / 2, playerY + pSize + velocity) then
 53. playerY += velocity
 54. else
 55. playerY = int((playerY + velocity + pSize.y) / tSize) * tSize - pSize.y
 56. velocity = 0
 57. endif

Here, we are using our collision() function to check if the tile below the player is not solid. We use
an exclamation mark (!) before the function call to check if the result is not true.

Let’s take a quick look at the arguments for the function call. We want to pass the player’s x and y
positions to the function, but we need a couple of other things.

661

First, we must add pSize / 2 to the x position, because we want to check the middle of the tile, not
the corner. We also add tSize to the y position to check the bottom of the tile rather than the top.
Check out the graphics below to see what we mean by this.

The image below shows the origin point of the tile in yellow. This point is (playerX, playerY).

If we add pSize.x / 2 to the x position, we are describing this point (shown in yellow):

Finally, we add pSize.y to the y position:

That gives us the bottom of the character’s feet, but we need to check where they are going to be,
not where they currently are. For this reason, we add the velocity variable to the y position. We
are checking where the character would be if velocity was added to their position.

Back to the if statement:

 52. if !collision(playerX + pSize.x / 2, playerY + pSize.y + velocity) then
 53. playerY += velocity

662

 54. else
 55. playerY = int((playerY + velocity + pSize.y) / tSize) * tSize - pSize.y
 56. velocity = 0
 57. endif

So, if the collision() function returns a false, we know that the tile in question is empty, and we can
apply velocity to the character’s y position.

We use an else on line 54 to give an instruction if the tile in question is not empty.

On line 55 we set the y position of the player to be exactly where we want it to be and set velocity
to 0.

Run the program to see the character fall perfectly on to the platform!

If you’ve made it this far, you deserve a huge congratulations!

Believe it or not, that’s all of the collision code complete. This will allow us to create new parts to
our level and they will work perfectly.

End Result

Let’s double check we’re at the same point in the project. Below is a list of exactly how the
program should look. If yours is all up to scratch and works without errors then we’ll see you in
the next tutorial where we’ll be making our player move and jump! Exciting!

 1. background = loadImage("Kenney/backgrounds", false)
 2. tilesheet = loadImage("Kenney/superPlatformPack", false)
 3. chrSheet = loadImage("Kenney/characters", false)
 4.
 5. playerX = 0
 6. playerY = 0
 7.
 8. gravity = 1
 9. velocity = 0
 10.
 11. screenX = 0
 12. screenY = 0
 13.
 14. tiles = [121, 138, 128, 129, 130]
 15.
 16. level = [
 17. [-1, -1],
 18. [-1, -1],
 19. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
 20. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 22. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 22. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 23.]
 24.
 25. levelHeight = 12
 26. levelOffset = levelHeight - len(level)
 27. tSize = 0
 28.
 29. loop
 30. clear()
 31.
 32. screenW = gwidth()
 33. screenH = gheight()
 34. scale = screenH / (tileSize(tilesheet, 121).y * levelHeight)
 35. tSize = scale * tileSize(tilesheet, 121).y
 36. pSize = tileSize(chrSheet, 96) * scale
 37.
 38. drawImage(background, -screenX, -screenY, screenH / imageSize(background).y)
 39.
 40. for row = 0 to len(level) loop
 41. for col = 0 to len(level[0]) loop
 42. if level[row][col] >= 0 then
 43. x = col * tSize

663

 44. y = (row + levelOffset) * tSize
 45. drawSheet(tilesheet, tiles[level[row][col]], x, y, scale)
 46. endif
 47. repeat
 48. repeat
 49.
 50. velocity += gravity
 51.
 52. if !collision(playerX + pSize.x / 2, playerY + pSize.y + velocity) then
 53. playerY += velocity
 54. else
 55. playerY = int((playerY + velocity + pSize.y) / tSize) * tSize - pSize.y
 56. velocity = 0
 57. endif
 58.
 59. drawSheet(chrSheet, 96, playerX, playerY, scale)
 60.
 61. update()
 62. repeat
 63.
 64. function collision(x, y)
 65. tileX = int(x / tSize)
 66. tileY = int(y / tSize) - levelOffset
 67.
 68. result = true
 69.
 70. if tileY < 0 or tileY >= len(level) or tileX < 0 or tileX >= len(level[0]) then
 71. result = false
 72. else
 73. if level[tileY][tileX] < 0 then
 74. result = false
 75. endif
 76. endif
 77. return result

Functions and Keywords used in this tutorial

clear(), drawImage(), drawSheet(), else, endIf, for, function, gHeight(), gWidth(), if, int(), len(),
loadImage(), loop, repeat, return, tileSize(), then, to, update()

664

Basic Game Tutorial 4: Character Movement

Back again are we? Good to see you!

In this part of the Basic Game Tutorials, we’ll be adding perhaps the most fun part of the project.
How to move the character and jump around.

Sounds simple, right? Let’s see about that shall we…

Actually, this part will be much more simple than the previous one. We have already completed
our collision check and we already have gravity and velocity, so moving the character should be a
walk in the park!

Before we actually animate the character, let’s just get them moving around properly.

First, we’ll tackle the left and right movement. Jumping will be more fun once we can move around
a little!

We’ll need two if statements to achieve left and right movement, one to check if the left
directional button has been pressed, and one for the right directional button.

Before we go ahead and write the if statements, it would be very useful to have a variable to
store the character’s movement speed. Let’s create that first. This will be a global variable at the
top of the program. We’ll add it at line 7, moving the gravity and velocity variables down a
couple of lines:

 8. moveSpeed = 5
 9.
 10. gravity = 1
 11. velocity = 0

Done!

Using the Directional Buttons to Move the Character

Before we write the if statements to move the character, we must call the controls() function to
access the Joy-Con buttons!

At the very start of the main loop, add line 34 below. We have included the surrounding lines to
make it clear:

 31. loop
 32. clear()
 33.
 34. c = controls(0)
 35.
 36. screenW = gwidth()
 37. screenH = gheight()

665

Great! We now have access to all the Joy-Con buttons by using our c variable.

Now let’s use the moveSpeed variable to create the movement if statements. We’ll begin with a
simple version, then we’ll add some polish.

Add the following lines to your program:

 63. if c.right then
 64. playerX += moveSpeed
 65. endif
 66.
 67. if c.left then
 68. playerX -= moveSpeed
 69. endif

These two very simple if statements do almost everything for us. They allow us to press the left
and right directional buttons and increase or decrease the player’s x position.

However, run the program and you might notice that if you walk off an edge then quickly walk
backwards, you can lodge yourself firmly inside a solid block! This isn’t quite what we want.

We need to use our brilliant collision() function in these if statements to check if the tile we are
about to move into is solid or empty.

Make the changes below to your if statements:

 63. if c.right and !collide(playerX + tSize / 2 + moveSpeed, playerY + tSize - 1) then
 64. playerX += moveSpeed
 65. endif
 66.
 67. if c.left and !collide(playerX + tSize / 2 - moveSpeed, playerY + tSize - 1) then
 68. playerX -= moveSpeed
 69. endif

Just like before, we are using the collision function to check if the position we are about to be in
is solid or empty. This is why we must add or subtract moveSpeed depending on which way we
are moving.

The Jump

Programming a jump is a key part of creating a platform game. There are multiple ways to achieve
a good jump. Since we are already simulating gravity and velocity, our jump code will be very
simple indeed and the results look fantastic!

This system of using gravity and velocity will work in any project you might want to use them in.

All we need to do is adjust the velocity variable. Let’s add a very simple if statement to our
program:

 54. if c.a then
 55. velocity -= 2
 56. endif

Run the program and press the A button lightly. Hopefully the character will briefly jump into the
air. When A is released, we will be brought back down to the ground by gravity. Awesome!

666

However… This jump is a little strange. We can hold down the A button to constantly move further
into the air, which isn’t exactly what we’d like! It’s a bit silly really.

What we need is a timer which tracks how long we have been in the air, and stops us from holding
down the A button to keep flying upwards if the timer reaches a certain point.

First, we’ll need to create the variable at the start of our program:

 10. gravity = 1
 11. velocity = 0
 12.
 13. jumpTimer = 0

We’ve shown the gravity and velocity variables here to make it clear where to put the jumpTimer
variable.

We begin the timer at 0 and we will count up as we are jumping. Let’s add something to the
jumping if statement:

 55. if c.a and jumpTimer < 12 then
 57. jumpTimer += 1
 58. velocity -= 2
 59. endif

That should do it! Run the program and press the A button to see our newly limited jump.

Oh dear! You might notice that we can only jump once!

This is because when we jump, we are now increasing the jumpTimer variable and it must be less
than 12 if we want to jump again.

In order to jump again, we must reset the jumpTimer variable when we reach the ground.

In the if statement which checks to see if the character will collide the floor, we must add
something after the else. Here’s how the full if statement should look:

 63. if !collision(playerX + tSize / 2, playerY + tSize + velocity) then
 64. playerY += velocity
 65. else
 66. playerY = int((playerY + velocity) / tSize) * tSize
 67. velocity = 0
 68. jumpTimer = 0
 69. endif

Notice the new line on line 68. We reset the jumpTimer variable when we know the player has
reached the floor.

A Little Extra Polish…

Our jump is pretty much complete. We can only stay in the air for a limited amount of time, we
come wonderfully back down to the ground and we collide with the floor. This is really all we
need, but it would be quite easy to add a couple of extra things which would really add some
polish to our game.

667

When we jump in real life we have an initial burst of upward velocity, then as we spend more time
in the air this decreases until it becomes negative, overcome by the force of gravity. We can make
something very similar happen in our jump code with a very simple change:

 56. if c.a and jumpTimer < 12 then
 57. jumpTimer += 1
 58. velocity -= 8 / jumpTimer
 59. endif

We have changed line 58 so that our velocity is dependent on the jumpTimer variable. The longer
we have been in the air, the more our velocity is divided by, therefore slowing our jump down as
we reach the peak.

To make the jump work nicely we have also increased the amount we modify velocity by to 8.
Changing this number will have a big effect on your jump!

You might have noticed that in the middle of your jump, you can press the A button again to pause
slightly in the air. This looks a little silly and we can fix it with some very useful code. So let’s do it!

We need to keep track of if the A button has been pressed. To do this we’ll need a variable. Add
the following global variable to the start of the program, just underneath the jumpTimer
variable:

 13. jumpTimer = 0
 14. oldA = 0

This oldA variable will only be either true or false. We will store the old state of the A button in
this variable, and check it against the current state of the A button using an if statement.

Let’s put that idea to use:

 62. if oldA and !c.a then
 63. jumpTimer = 12
 64. endif
 65.
 66. oldA = c.a

This tricky if statement resets the jump timer to the maximum value if the A button is pressed
again during the jump.

The Program So Far

As always, here is a copy of the entire program so far to make sure you’re up to speed. If you’re
having problems with your code, feel free to start a new project and copy and paste the entire
program to be certain:

 1. background = loadImage("Kenney/backgrounds", false)
 2. tilesheet = loadImage("Kenney/superPlatformPack", false)
 3. chrSheet = loadImage("Kenney/characters", false)
 4.
 5. playerX = 0
 6. playerY = 0
 7.
 8. moveSpeed = 5
 9.
 10. gravity = 1
 11. velocity = 0

668

 12.
 13. jumpTimer = 0
 14. oldA = 0
 15.
 16. screenX = 0
 17. screenY = 0
 18.
 19. tiles = [121, 138, 128, 129, 130]
 20.
 21. level = [
 22. [-1, -1],
 23. [-1, -1],
 24. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
 25. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 26. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 27. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 28.]
 29.
 30. levelHeight = 12
 31. levelOffset = levelHeight - len(level)
 32. tSize = 0
 33.
 34. loop
 35. clear()
 36.
 37. c = controls(0)
 38.
 39. screenW = gwidth()
 40. screenH = gheight()
 41. scale = screenH / (tileSize(tilesheet, 121).y * levelHeight)
 42. tSize = scale * tileSize(tilesheet, 121).y
 43. pSize = tileSize(chrSheet, 96) * scale
 44.
 45. drawImage(background, -screenX, -screenY, screenH / imageSize(background).y)
 46.
 47. for row = 0 to len(level) loop
 48. for col = 0 to len(level[0]) loop
 49. if level[row][col] >= 0 then
 50. x = col * tSize
 51. y = (row + levelOffset) * tSize
 52. drawSheet(tilesheet, tiles[level[row][col]], x, y, scale)
 53. endif
 54. repeat
 55. repeat
 56.
 57. if c.a and jumpTimer < 12 then
 58. jumpTimer += 1
 59. velocity -= 8 / jumpTimer
 60. endif
 61.
 62. if oldA and !c.a then
 63. jumpTimer = 12
 64. endif
 65.
 66. oldA = c.a
 67.
 68. velocity += gravity
 69.
 70. if !collision(playerX + pSize.x / 2, playerY + pSize.y + velocity) then
 71. playerY += velocity
 72. else
 73. playerY = int((playerY + velocity + pSize.y) / tSize) * tSize - pSize.y
 74. velocity = 0
 75. jumpTimer = 0
 76. endif
 77.
 78. if c.right and !collision(playerX + pSize.x / 2 + moveSpeed, playerY + pSize.y - 1) then
 79. playerX += moveSpeed
 80. endif
 81.
 82. if c.left and !collision(playerX + pSize.x / 2 - moveSpeed, playerY + pSize.y - 1) then
 83. playerX -= moveSpeed
 84. endif
 85.
 86. drawSheet(chrSheet, 96, playerX, playerY, scale)
 87.
 88. update()
 89. repeat
 90.
 91. function collision(x, y)
 92. tileX = int(x / tSize)
 93. tileY = int(y / tSize) - levelOffset

669

 94.
 95. result = true
 96.
 97. if tileY < 0 or tileY >= len(level) or tileX < 0 or tileX >= len(level[0]) then
 98. result = false
 99. else
100. if level[tileY][tileX] < 0 then
101. result = false
102. endif
103. endif
104. return result

Functions and Keywords used in this tutorial

clear(), controls(), drawImage(), drawSheet(), else, endIf, for, function, gHeight(), gWidth(), if,
int(), len(), loadImage(), loop, repeat, return, tileSize(), then, to, update()

670

Basic Game Tutorial 5: Animation

Hello yet again! Congratulations on your diligent hard work, determination and commitment to
improving your skills. You’re great.

In this part of the Game tutorial, we’ll really be bringing this project to life. It’s all well and good
having a moving character jumping and walking on platforms, but without animations things look
rather bland.

We’ll be covering the basics of character animations in this tutorial and as always, the concepts
used here can be applied to absolutely any project.

To make the character animations work smoothly and simply, we’ll be creating something called a
state machine.

What is a State Machine?

It’s a cool way of saying that we’re keeping track of the player’s current state. At any time, the
player might be idle (standing still), walking, jumping or being hit by an enemy. If we keep track of
what state the player is currently in, we can use this information to make animating the player
very simple.

First, as always, let’s create some variables! We’ll need 6 variables here. Add the following lines to
the top of your program, just beneath the moveSpeed variable:

 8. moveSpeed = 5
 9.
 10. idle = 0
 11. walk = 1
 12. jump = 2
 13. hit = 3
 14.
 15. state = idle

Now we have a variable for each state the player might be in. As you can see, each one holds a
different number. We will use this number as an index into an array of animations.

We have also created a variable called state which we will use to store the player’s state.

Now let’s create the array of animation information, just beneath these variables:

 17. anim = [
 18. [.start = 96, .length = 1],
 19. [.start = 97, .length = 11],
 20. [.start = 95, .length = 1],
 21. [.start = 94, .length = 1]
 22.]

671

There we have it! In this array of structures, we store the start tile of each state’s animation. The
idle animation for the player is a single frame with a tile number of 96, so the .start property is 96,
and the .length property is 1. Here’s an image to detail why we use these numbers in particular:

As you can see, the walk animation begins at tile 96 and lasts for 11 frames. The jump animation
begins at tile 95 and lasts for only one frame.

We have created this array in the same order as the state variables. Because of this, we can now
access any of these state animations with a statement like:

 print(anim[walk].start)

Clever right!

Now let’s put these to use. We have one last variable to create first, which will store the current
animation frame. We’ll call this animationFrame and it will be defined just after the anim array:

 24. animationFrame = 0

We’re all set!

Time to use these variables in the drawSheet() function used to draw the player. Take a look at
the end of the main game loop:

102. drawSheet(chrSheet, 96, playerX, playerY, scale)

Currently we are using a single fixed value for the tile. Rather than the number 96, we need to use
a variable instead in order to change this during the game. Create a line just above the
drawSheet() function and define the following variable:

102. animationStart = anim[state].start
103.
104. drawSheet(chrSheet, 96, playerX, playerY, scale)

Our variable is called animationStart and it will store the starting frame of animation for our
states. This variable isn’t totally necessary as we can simply use anim[state].start, but it makes
our code easier to read.

Remember the animationFrame variable we created earlier? It’s time to put this to use:

104. drawSheet(chrSheet, animationStart + animationFrame, playerX, playerY, scale)

All we have done for this change is swapped out the 96 in our drawSheet() function for
animationStart + animationFrame.

This is a very helpful way of changing the tile shown for the player. All we need to do now is
increase the animationFrame variable and our tile will animate!

104. drawSheet(chrSheet, animationStart + animationFrame, playerX, playerY, scale)
105.
106. animationFrame += 0.2

672

Run the program to see something very strange!

Our character animates, but then turns into other characters and completely different tiles until
we get an error. Do you understand why this is happening?

We are increasing the tile past the point we want and displaying tiles that aren’t in the correct
range.

With a couple of if statements we can solve this! Create a few lines of space above the
drawSheet() line, and add the following if statement:

104. if animationFrame >= anim[state].length then
105. animationFrame = 0
109. endif
107.
108. drawsheet(chrSheet, animation + animationFrame, playerX, playerY, scale)

When we run the program our tile will no longer change. This actually means it’s working
correctly!

The animation for the idle state is just a single frame. In the animation array, the idle state
animation has a .start of 96 and a .length of 1.

This means the animationFrame variable never gets above 1, therefore we only see a single
frame.

Time to put the state machine to use! Our animation array stores the start and end tiles of each set
of animations for each state of the character. All we need to do now is change the player’s state!

We must set the state at various points in our program. Remember, we set the state at the start of
the program as idle by default. Let’s check the first place to change it:

 73. if c.a and jumpTimer < 12 then
 74. jumpTimer += 1
 75. velocity -= 8 / jumpTimer
 76. state = jump
 77. endif

Right here seems like a good place! When the character jumps into the air, we need the state to
change in order to see the jump frame.

Run the program and jump to see if it works!

If it’s working properly, our character should change to the jump frame but they will not change
back.

To make the character go back the idle frame, we just need to switch the state back to idle when
they land:

 87. if !collision(playerX + tSize / 2, playerY + tSize + velocity) then
 88. playerY += velocity
 89. else
 90. playerY = int((playerY + velocity) / tSize) * tSize
 91. velocity = 0

673

 92. jumpTimer = 0
 93. state = idle
 94. endif

Above is the if statement which causes the character to fall through empty space and land on
platforms. Below the else is what will happen when our character lands on a platform tile. Here we
just need to add state = idle and we’re done!

Run the program and see our character’s glorious jump! Truly a more majestic jump has never
been seen.

All that’s left is to make our character walk. We already have all the data we need - we just need to
change the state variable to walk. We need to add something to our left and right movement if
statements.

 96. if c.right and !collision(playerX + tSize / 2 + moveSpeed, playerY + tSize -1) then
 97. playerX += moveSpeed
 98. if state != jump then
 99. state = walk
100. endif
100. endif

We have added lines 98 to 100 above in the first of the movement if statements. We want to set
the state to walk when we press the right or left directional buttons, but only if we are not
already jumping. Therefore we must write:

if state != jump then
 state = walk
endif

Now let’s add the exact same thing to left movement if statement:

103. if c.left and !collision(playerX + tSize / 2 - moveSpeed, playerY + tSize - 1) then
104. playerX -= moveSpeed
105. if state != jump then
106. state = walk
107. endif
108. endif

That’s it! Our player animation is complete! Run the program and move the character around to
see the results.

There is one last little task we must accomplish before moving to the next stage however. At the
minute, we can move the character, jump and land on platforms, but when we travel to the right
side of the screen, the camera doesn’t move to reveal the rest of the level! This just won’t do.

We already have the variables we’ll need, we just need to put them to use. Add the lines below to
your program:

 61. if playerX - screenX < screenW * 0.4 then
 62. screenX -= moveSpeed
 63. endif
 64. if playerX - screenX > screenW * 0.6 then
 65. screenX += moveSpeed
 66. endif
 67. if screenX < 0 then

674

 68. screenX = 0
 69. endif

Run the program once you’ve added the lines above and travel to the right side of the screen. We
should see the background move, but not the level just yet!

This is because we need to modify our level drawing position to be relative to the screenX
variable.

Go to the for loop which draws the level and add the change below:

 73. for row = 0 to len(level) loop
 74. for col = to len(level[0]) loop
 75. if level[row][col] >= 0 then
 76. x = col * tSize
 77. y = (row + levelOffset) * tSize
 78. drawSheet(tilesheet, tiles[level[row][col]], x - screenX, y, scale)
 79. endif
 80. repeat
 81. repeat

Can you spot the change? It’s not very obvious. On line 78, we must add a - screenX to the x
position argument of the drawSheet() function. This will cause the level to be drawn relative to
the movement of our screen.

We must also do this same thing for the player or we’ll encounter some strange problems. Find the
drawSheet() line for the player and add the same change:

126. drawSheet(chrSheet, animationStart + animationFrame, playerX - screenX, playerY, scale)

Run the program and travel to the right to see the level and background and level move with the
player to reveal the rest of the level.

Wouldn’t it be nice if the background image moved at a different speed than the level? This way, it
would really look as though the background was in the distance! We can do this very easily. Find
the drawImage() line which draws the background:

 71. drawImage(background, -screenX / 2, - screenY, screenH / imageSize(background).y)

We simply add a / 2 to the x position! Now our background will move at half the speed of the
foreground.

Run the program to see a wonderful moving level. All done!

The Program So Far

As always, we have a complete and up-to-date version of the whole program so far just below. If
your program is not working and you cannot figure it out, feel free to copy and paste this code into
a new project file:

 1. background = loadImage("Kenney/backgrounds", false)
 2. tilesheet = loadImage("Kenney/superPlatformPack", false)
 3. chrSheet = loadImage("Kenney/characters", false)
 4.
 5. playerX = 0
 6. playerY = 0
 7.
 8. moveSpeed = 5

675

 9.
 10. idle = 0
 11. walk = 1
 12. jump = 2
 13. hit = 3
 14.
 15. state = idle
 16.
 17. anim = [
 18. [.start = 96, .length = 1],
 19. [.start = 97, .length = 11],
 20. [.start = 95, .length = 1],
 21. [.start = 94, .length = 1]
 22.]
 23.
 24. animationFrame = 0
 25.
 26. gravity = 1
 27. velocity = 0
 28.
 29. jumpTimer = 0
 30. oldA = 0
 31.
 32. screenX = 0
 33. screenY = 0
 34.
 35. tiles = [121, 138, 128, 129, 130]
 36.
 37. level = [
 38. [-1, -1],
 39. [-1, -1],
 40. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
 41. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 42. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 43. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 44.]
 45.
 46. levelHeight = 12
 47. levelOffset = levelHeight - len(level)
 48. tSize = 0
 49.
 50. loop
 51. clear()
 52.
 53. c = controls(0)
 54.
 55. screenW = gwidth()
 56. screenH = gheight()
 57. scale = screenH / (tileSize(tilesheet, 121).y * levelHeight)
 58. tSize = scale * tileSize(tilesheet, 121).y
 59. pSize = tileSize(chrSheet, 96) * scale
 60.
 61. if playerX - screenX < screenW * 0.4 then
 62. screenX -= moveSpeed
 63. endif
 64. if playerX - screenX > screenW * 0.6 then
 65. screenX += moveSpeed
 66. endif
 67. if screenX < 0 then
 68. screenX = 0
 69. endif
 70.
 71. drawImage(background, -screenX / 2, -screenY, screenH / imageSize(background).y)
 72.
 73. for row = 0 to len(level) loop
 74. for col = 0 to len(level[0]) loop
 75. if level[row][col] >= 0 then
 76. x = col * tSize
 77. y = (row + levelOffset) * tSize
 78. drawSheet(tileSheet, tiles[level[row][col]], x - screenX, y, scale)
 79. endif
 80. repeat
 81. repeat
 82.
 83. if c.a and jumpTimer < 12 then
 84. jumpTimer += 1
 85. velocity -= 8 / jumpTimer
 86. state = jump
 87. endif
 88.
 89. if oldA and !c.a then
 90. jumpTimer = 12

676

 91. endif
 92.
 93. oldA = c.a
 94.
 95. velocity += gravity
 96.
 97. if !collision(playerX + pSize.x / 2, playerY + pSize.y + velocity) then
 98. playerY += velocity
 99. else
100. playerY = int((playerY + velocity + pSize.y) / tSize) * tSize - pSize.y
101. velocity = 0
102. jumpTimer = 0
103. state = idle
104. endif
105.
106. if c.right and !collision(playerX + pSize.x / 2 + moveSpeed, playerY + pSize.y - 1) then
107. playerX += moveSpeed
108. if state != jump then
109. state = walk
110. endif
111. endif
112.
113. if c.left and !collision(playerX + pSize.x / 2 - moveSpeed, playerY + pSize.y - 1) then
114. playerX -= moveSpeed
115. if state != jump then
116. state = walk
117. endif
118. endif
119.
120. animationStart = anim[state].start
121.
122. if animationFrame >= anim[state].length then
123. animationFrame = 0
124. endif
125.
126. drawSheet(chrSheet, animationStart + animationFrame, playerX - screenX, playerY, scale)
127.
128. animationFrame += 0.2
129.
130. update()
131. repeat
132.
133. function collision(x, y)
134. tileX = int(x / tSize)
135. tileY = int(y / tSize) - levelOffset
136.
137. result = true
138.
139. if tileY < 0 or tileY >= len(level) or tileX < 0 or tileX >= len(level[0]) then
140. result = false
141. else
142. if level[tileY][tileX] < 0 then
143. result = false
144. endif
145. endif
146. return result

Functions and Keywords used in this tutorial

clear(), controls(), drawImage(), drawSheet(), else, endIf, for, function, gHeight(), gWidth(), if,
int(), len(), loadImage(), loop, repeat, return, tileSize(), then, to, update()

677

Basic Game Tutorial 6: Items

Congratulations on making it to the final part of this project! Hopefully you’ve learned a lot
throughout these tutorials and feel better about going about creating your own game.

In this part of the tutorial we’ll be adding items to collect. As with the previous parts, the way we
will achieve this in our program will allow you to add more items very easily.

Let’s keep it classic with the good old coin. Our project will begin with just coins for our items, but
adding different types will be very simple.

We’ll need to begin with a few variables as usual. Just like with the state machine in the previous
project, the items need a type and a state. Add the following lines to your program:

 50. coin = 0
 51.
 52. active = 0
 53. collect = 1
 54. inactive = 2

There we go! We’ve got a variable called coin which stores a 0. This will be used as an index into
an array of tiles.

Similarly, we have a number of state variables below this which we will use to determine what
happens to the coin during the game.

Now we need to create the array of items. Each item needs its own structure with a number of
properties:

 56. items = [
 57. [.type = coin, .x = 7, .y = 1, .state = active],
 58. [.type = coin, .x = 8, .y = 0, .state = active],
 59. [.type = coin, .x = 9, .y = 0, .state = active],
 60. [.type = coin, .x = 10, .y = 1, .state = active]
 61.]

As you can see, each item has 4 properties. We have a .type which stores the type of the item. We
have a .x and .y which are the level coordinates of the item (different than the screen coordinates,
these level coordinates tell us which row and column of the level array the item will appear in)
and finally a .state property to store the state.

Next up we’ll need the tilesheet information to animate the items, just like we needed for the
player:

 63. itemAnim = [
 64. [.start = 154, .length = 1]
 65.]

678

Since we are only using coins at the moment, we don’t need any more information in this array. If
we were to add another type of item, we would need more information.

This information can be accessed with itemAnim[0].start, or, since we have a coin variable which
stores a 0, we can say itemAnim[items[0].type]. This sort of array indexing, despite looking quite
complex, is very useful and worth getting your head around!

We are using the item.type property as an index into the itemAnim array.

Lastly, we should create a variable to keep track of the number of coins the player has collected:

 67. playerCoins = 0

Excellent. Now we have everything we need to put the items on screen. Head into the main loop
for this next part, just after the for loop which draws the level.

We’ll be using a for loop to loop over the array of items and draw each one. This for loop will end
up being rather long and complex looking, so let’s build it step by step. First we just want to
actually draw the coins on screen:

102. for i = 0 to len(items) loop
103. x = items[i].x * tSize
104. y = (items[i].y + levelOffset) * tSize
105. drawSheet(tilesheet, itemAnim[items[i].type].start, x - screenX, y, scale)
106. repeat

Run the program and we should see the coins on screen. Of course, without the code to make it
happen, we cannot pick the coins up yet.

Before we do that, let’s make sure we understand what’s happening. Our for loop counts using an
i variable from 0 to the length of our items array. Our items array has 4 elements, so i will count
from 0 to 3.

We create some local x and y variables to store the position of the item. This is just to make our
code easier to read.

We take the .x and .y properties of the current item in question and multiply ithem by the tSize
variable to give us the screen coordinates for the item. With the y position, we must add the
levelOffset in order to put them on the correct row.

Then, on line 105, we use the drawSheet() function to draw the item. The tricky part here is the
tile index:

itemAnim[items[i].type].start

This is actually one property of a structure within an array of structures indexing another array of
structures to give us the correct property with which to index into a tilesheet. Try saying that
three times quickly.

Since the only item type we are using is a coin, items[i].type is always a 0. If we use a 0 as an index
into the itemAnim array, we get the animation tile for the coin.

679

As mentioned before, this might seem a little pointless since we could simply use the tile number
for the coin in the tilesheet, but then when it comes to adding items we’ll have a very difficult time
indeed.

Collecting the Coins

If we want to be able to collect the coins, we’ll have to make this for loop of ours a little more
complicated.

First we’ll wrap the calculations and the drawsheet() line in an if statement. We only want to do
these things if the item is not inactive.

102. for i = 0 to len(items) loop
103. if items[i].state != inactive then
104. x = items[i].x * tSize
105. y = (items[i].y + levelOffset) * tSize
106. drawSheet(tilesheet, itemAnim[items[i].type].start, x - screenX, y, scale)
107. endif
108. repeat

Great! Now we need to add an if statement to check if the player has moved into the range of an
item.

Collision If Statement

This if statement is going to be quite long indeed. When writing game code there really is no
avoiding this sometimes. Ready?

102. for i = 0 to len(items) loop
103. if items[i].state != inactive then
104. x = items[i].x * tSize
105. y = (items[i].y + levelOffset) * tSize
106. if playerX + pSize.x > x and playerX < x + tSize and
107. playerY + pSize.y > y and playerY < y + tSize and
108. items[i].state == active
109. then
110. drawSheet(tilesheet, itemAnim[items[i].type].start, x - screenX, y, scale)
111. endif
112. repeat

Phew, check that out for an if statement! It’s not even finished yet, this is just the condition! It’s so
large that we’ve split it up across multiple lines to make it easier to read. Remember, you can
format your code however you like! There’s nothing stopping you from breaking up long lines into
multiple to make things clearer.

We are checking if the right hand side of the player (playerX + pSize.x) is greater than the left side
of the coin (> x), and the the left side of the player playerX is less than the right hand edge of the
coin < x + tSize.

We are also checking if the player’s feet playerY + pSize.y is greater than the top of the coin > y,
and that the top of the player’s head (playerY) is less than the bottom of the coin tile ({< y +
tSize}).

We are also checking that the coin itself has to be active.

680

These 5 conditions must all be true for this if statement to begin. Now let’s actually make
something happen in it!

102. for i = 0 to len(items) loop
103. if items[i].state != inactive then
104. x = items[i].x * tSize
105. y = (items[i].y + levelOffset) * tSize
106. if playerX + pSize.x > x and playerX < x + tSize and
107. playerY + pSize.y > y and playerY < y + tSize and
108. items[i].state == active
109. then
110. playNote(0, 3, 1046.50, 1, 20, 0.5)
111. playNote(1, 3, 1396.71, 1, 10, 0.5)
112. playerCoins += 1
113. items[i].state = collect
114. endif
115. drawSheet(tilesheet, itemAnim[items[i].type].start, x - screenX, y, scale)
116. endif
117. repeat

There we have it. As you can see, the new lines are from 109 to 114. After the then, we first use
two playNote() functions to play a nice coin collection sound.

We also increase the playerCoins variable by 1 and change the .state property of the item to
collect.

By having a state other than active and inactive, we can now apply some cool things to happen
before the coin vanishes.

When we pick up an item in a game we sometimes see that item shoot into the air a little before
vanishing. Let’s make this happen by using the .collect state:

102. for i = 0 to len(items) loop
103. if items[i].state != inactive then
104. x = items[i].x * tSize
105. y = (items[i].y + levelOffset) * tSize
106. if playerX + pSize.x > x and playerX < x + tSize and
107. playerY + pSize.y > y and playerY < y + tSize and
108. items[i].state == active
109. then
110. playNote(0, 3, 1046.50, 1, 20, 0.5)
111. playNote(1, 3, 1396.71, 1, 10, 0.5)
112. playerCoins += 1
113. items[i].state = collect
114. endif
115. if items[i].state == collect then
116. items[i].y -= 0.15
117. if items[i].y < -1 then
118. items[i].state = inactive
119. endif
120. endif
121. drawSheet(tilesheet, itemAnim[items[i].type].start, x - screenX, y, scale)
122. endif
123. repeat

There we go. That’s our for loop all done!

Because of the collect state, we can make something happen to the item before it vanishes. On line
115 we check if the state of an item is collect. If it is, we reduce the y position of the item by a small
amount. We then have another if statement within this to check if the y position has gone past a

681

certain number. If it has, we change the state to inactive! Once the state is inactive, the item is no
longer drawn due to the if statement on line 103.

Told you it would be a rather large for loop!

We’re still missing something… We currently have no way of telling how many coins we have! We
need a couple of draw commands to display the number of coins. Let’s put these just after our
items for loop:

125. drawSheet(tilesheet, 154, 10, 10, scale)
126. drawText(10 + tSize * 0.75 + 10, 10, tSize * 0.75, grey, playerCoins)

The drawSheet() line just above puts an image of the coin in the top left corner of our screen. The
drawText() line simply displays the playerCoins variable next to it!

Run the program and pick up a coin! We should hear a little sound, see the coin pop into the air
and our coin counter in the top left should increase. If that’s all happening, excellent!

The Program So Far

Alright that’s all for now. As usual, below is a copy of the whole program. Make sure we’re
matching and your program works as intended before moving on to the next tutorial, in which
we’ll be adding an enemy to the game!

 1. background = loadImage("Kenney/backgrounds", false)
 2. tilesheet = loadImage("Kenney/superPlatformPack", false)
 3. chrSheet = loadImage("Kenney/characters", false)
 4.
 5. playerX = 0
 6. playerY = 0
 7.
 8. moveSpeed = 5
 9.
 10. idle = 0
 11. walk = 1
 12. jump = 2
 13. hit = 3
 14.
 15. state = idle
 16.
 17. anim = [
 18. [.start = 96, .length = 1],
 19. [.start = 97, .length = 11],
 20. [.start = 95, .length = 1],
 21. [.start = 94, .length = 1]
 22.]
 23.
 24. animationFrame = 0
 25.
 26. gravity = 1
 27. velocity = 0
 28.
 29. jumpTimer = 0
 30. oldA = 0
 31.
 32. screenX = 0
 33. screenY = 0
 34.
 35. tiles = [121, 138, 128, 129, 130]
 36.
 37. level = [
 38. [-1, -1],
 39. [-1, -1],
 40. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
 41. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 42. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 43. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 44.]
 45.

682

 46. levelHeight = 12
 47. levelOffset = levelHeight - len(level)
 48. tSize = 0
 49.
 50. coin = 0
 51.
 52. active = 0
 53. collect = 1
 54. inactive = 2
 55.
 56. items = [
 57. [.type = coin, .x = 7, .y = 1, .state = active],
 58. [.type = coin, .x = 8, .y = 0, .state = active],
 59. [.type = coin, .x = 9, .y = 0, .state = active],
 60. [.type = coin, .x = 10, .y = 1, .state = active]
 61.]
 62.
 63. itemAnim = [
 64. [.start = 154, .length = 1]
 65.]
 66.
 67. playerCoins = 0
 68.
 69. loop
 70. clear()
 71.
 72. c = controls(0)
 73.
 74. screenW = gwidth()
 75. screenH = gheight()
 76. scale = screenH / (tileSize(tilesheet, 121).y * levelHeight)
 77. tSize = scale * tileSize(tilesheet, 121).y
 59. pSize = tileSize(chrSheet, 96) * scale
 60.
 61. if playerX - screenX < screenW * 0.4 then
 62. screenX -= moveSpeed
 63. endif
 64. if playerX - screenX > screenW * 0.6 then
 65. screenX += moveSpeed
 66. endif
 67. if screenX < 0 then
 68. screenX = 0
 69. endif
 70.
 71. drawImage(background, -screenX / 2, -screenY, screenH / imageSize(background).y)
 72.
 73. for row = 0 to len(level) loop
 74. for col = 0 to len(level[0]) loop
 75. if level[row][col] >= 0 then
 76. x = col * tSize
 77. y = (row + levelOffset) * tSize
 78. drawSheet(tilesheet, tiles[level[row][col]], x - screenX, y, scale)
 79. endif
 80. repeat
 81. repeat
 82.
102. for i = 0 to len(items) loop
103. if items[i].state != inactive then
104. x = items[i].x * tSize
105. y = (items[i].y + levelOffset) * tSize
106. if playerX + pSize.x > x and playerX < x + tSize and
107. playerY + pSize.y > y and playerY < y + tSize and
108. items[i].state == active
109. then
110. playNote(0, 3, 1046.50, 1, 20, 0.5)
111. playNote(1, 3, 1396.71, 1, 10, 0.5)
112. playerCoins += 1
113. items[i].state = collect
114. endif
115. if items[i].state == collect then
116. items[i].y -= 0.15
117. if items[i].y < -1 then
118. items[i].state = inactive
119. endif
120. endif
121. drawSheet(tilesheet, itemAnim[items[i].type].start, x - screenX, y, scale)
122. endif
123. repeat
124.
125. if c.a and jumpTimer < 12 then
126. jumpTimer += 1
127. velocity -= 8 / jumpTimer

683

128. state = jump
129. endif
130.
131. if oldA and !c.a then
132. jumpTimer = 12
133. endif
134.
135. oldA = c.a
136.
137. velocity += gravity
138.
139. if !collision(playerX + pSize.x / 2, playerY + pSize.y + velocity) then
140. playerY += velocity
141. else
142. playerY = int((playerY + velocity + pSize.y) / tSize) * tSize - pSize.y
143. velocity = 0
144. jumpTimer = 0
145. state = idle
146. endif
147.
148. if c.right and !collision(playerX + pSize.x / 2 + moveSpeed, playerY + pSize.y - 1) then
149. playerX += moveSpeed
150. if state != jump then
151. state = walk
152. endif
153. endif
154.
155. if c.left and !collision(playerX + pSize.x / 2 - moveSpeed, playerY + pSize.y - 1) then
156. playerX -= moveSpeed
157. if state != jump then
158. state = walk
159. endif
160. endif
161.
162. animationStart = anim[state].start
163.
164. if animationFrame >= anim[state].length then
165. animationFrame = 0
166. endif
167.
168. drawSheet(chrSheet, animationStart + animationFrame, playerX - screenX, playerY, scale)
169.
170. animationFrame += 0.2
171.
172. update()
173. repeat
174.
175. function collision(x, y)
176. tileX = int(x / tSize)
177. tileY = int(y / tSize) - levelOffset
178.
179. result = true
180.
181. if tileY < 0 or tileY >= len(level) or tileX < 0 or tileX >= len(level[0]) then
182. result = false
183. else
184. if level[tileY][tileX] < 0 then
185. result = false
186. endif
187. endif
188. return result

Functions and Keywords used in this tutorial

clear(), controls(), drawImage(), drawSheet(), drawText(), else, endIf, for, function, gHeight(),
gWidth(), if, int(), len(), loadImage(), loop, playNote(), repeat, return, tileSize(), then, to, update()

684

Basic Game Tutorial 7: Enemies

Welcome back! We’re close to completion with this last part of the tutorial!

Creating enemies is going to be very similar indeed to the way we have programmed the items.
We’ll be using the exact same techniques here, even re-using the state variables we created in the
last part.

However, we will need an extra state for the enemies. This state will be death and we will use it
when we jump on an enemy. Add the following line to the item state variables:

 50. coin = 0
 51.
 52. active = 0
 53. collect = 1
 54. inactive = 2
 55. death = 3

All done. Now we need to create a type for the enemy along with a couple of arrays just like before.
This next bit of code should go just before the main loop:

 70. slime = 0

Just like with coin, we create a variable to store an index into an array. Our enemy is going to be a
slime, so that’s what we’ve called the variable!

Next let’s create the enemy information array:

 72. enemies = [
 73. [.type = slime, .x = 20, .y = 1, .state = active, .frame = 0, .velocity = 0, .dir = 0.05]
 74.]

You might notice that we have more properties for the enemies than the items. We want our
enemy to move around and to be affected by gravity just like the player. Because of this, each
enemy needs a .velocity and a .dir to store its movement speed and direction. Since the enemies
have multiple frames of animation and each enemy might be animated at different times, each
enemy needs its own .frame property too.

Now we need an array to store the animation details for the enemies:

 76. enemyAnim = [
 77. [.start = 165, .length = 2]
 78.]

Given that we only have one type of enemy (a slime), we only need one element in this array for
now. If we added more enemy types, we would need more elements in this array with the tile
information for each one.

For now we have everything we need to put a slime on screen and make it move.

685

Just as with the items, this will be a for loop which ends up being quite large. Ready? Of course
you are.

This for loop will go after the draw commands for the items. Just like before, we’ll start simple
and add features as we go:

139. for i = 0 to len(enemies) loop
140. if enemies[i].state != inactive then
141. x = enemies[i].x * tSize
142. y = (enemies[i].y + levelOffset) * tSize
143. eAnimStart = enemyAnim[enemies[i].type].start
144. eSize = tileSize(chrSheet, eAnimStart + enemies[i].frame) * scale)
145. drawSheet(chrSheet, eAnimStart + enemies[i].frame, x - screenX, y, scale)
146. endif
147. repeat

This for loop counts over the enemies array. First we check to see if the .state property is not
inactive. If it is not, we calculate x and y positions just like with items.

On line 143 we create a variable to make our code easier to read. eAnimStart stores the starting
tile of the enemy animation from the tilesheet.

We also create a variable to store the size of the scaled up enemy tile on line 144. Since each
frame of the enemy animation might be a different size, we use eAnimStart + enemies[i].frame in
the tileSize() function to give us the correct size for each frame.

Finally, on line 145 we use the drawSheet() function to draw the enemy at its calculated position.

Run the program to see our slimy friend sitting comfortably in mid air above the third platform of
the level.

We still have some ways to go!

First, let’s get the slime to animate. We’ll need to adjust the enemies[i].frame property to achieve
this:

139. for i = 0 to len(enemies) loop
140. if enemies[i].state != inactive then
141. x = enemies[i].x * tSize
142. y = (enemies[i].y + levelOffset) * tSize
143. eAnimStart = enemyAnim[enemies[i].type].start
144. eSize = tileSize(chrSheet, eAnimStart + enemies[i].frame) * scale)
145. drawSheet(chrSheet, eAnimStart + enemies[i].frame, x - screenX, y, scale)
146. enemies[i].frame += 0.1
147. if enemies[i].frame >= enemyAnim[enemies[i].type].length then
148. enemies[i].frame = 0
149. endif
150. endif
151. repeat

We have added lines 146 to 149 above. Just as we did with the player animation, we use an
increasing animation frame variable to animate the enemy, then an if statement checks to see if
the animation frame is greater than the length of the animation stored in the enemyAnim array. If
it is, we reset it to 0.

Run the program to see our slime sliming about from one frame to the next. Let’s get them out of
the air and apply some gravity. First, we’ll need an if statement:

686

139. for i = 0 to len(enemies) loop
140. if enemies[i].state != inactive then
141. x = enemies[i].x * tSize
142. y = (enemies[i].y + levelOffset) * tSize
143. eAnimStart = enemyAnim[enemies[i].type].start
144. eSize = tileSize(chrSheet, eAnimStart + enemies[i].frame) * scale)
145.
146. if enemies[i].state != death then
147. endif
148.
149. drawSheet(chrSheet, eAnimStart + enemies[i].frame, x - screenX, y, scale)
150. enemies[i].frame += 0.05
151. if enemies[i].frame >= enemyAnim[enemies[i].type].length then
152. enemies[i].frame = 0
153. endif
154. endif
155. repeat

We’ve created some lines of space around our new if statement on line 146 to make things
clearer. Everything we add to this from here onward will be inside this if statement, since we only
want the enemy to move or be jumped on if they are not already in the death state.

The death state for the enemies will be very similar to the collect state for items, since it will be
used to make something specific happen before the enemy becomes inactive.

Let’s get gravity and velocity working first of all:

146. if enemies[i].state != death then
147. enemies[i].velocity += gravity
148. if !collision(x + eSize.x / 2, y + eSize.y + enemies[i].velocity / eSize.y) then
149. enemies[i].y += enemies[i].velocity / tSize
150. else
151. enemies[i].y = int((enemies[i].y + enemies[i].velocity / tSize + eSize.y / tSize)) - eSize.y / tSize
152. enemies[i].velocity = 0
153. endif
154. endif

There we have it! Run the program and our slimy friend should fall down to the ground and land
safely.

To achieve this we are using almost exactly the same section of code as we did to make the player
land safely on a platform. We use the custom collision() function again to check if the tile beneath
the enemy is one to collide with. If it is not (!), we apply the enemy’s .velocity to the y position.

Colliding with Enemies

In order to interact with the enemies, we’ll need a gigantic if statement just like we did for the
items. Again, we’ll split this up across a few lines for clarity:

146. if enemies[i].state != death then
147. enemies[i].velocity += gravity
148. if !collision(x + eSize.x / 2, y + eSize.y + enemies[i].velocity / eSize.y) then
149. enemies[i].y += enemies[i].velocity / tSize
150. else
151. enemies[i].y = int((enemies[i].y + enemies[i].velocity / tSize + eSize.y / tSize)) - eSize.y / tSize
152. enemies[i].velocity = 0
153. endif
154. if playerX + pSize.x > x and playerX < x + eSize.x and
155. playerY + pSize.y > y and playerY < y + eSize.y and
156. enemies[i].state == active and velocity > 0
157. then
158. enemies[i].state = death
159. endif
160. endif

687

Our monster of an if statement begins at line 154. Similar to the items we are checking if the x
and y positions of the player are in range of the x and y positions of the enemy. We also check if
the enemy is in the active state, since the enemy must be alive and well in order for us to collide
with them.

One extra condition in the if statement is that we must have a velocity greater than 0 (and
velocity > 0). This means we cannot hurt the enemy unless we are jumping, since jumping is the
only way to increase our velocity!

If all of these 6 conditions are true, the whole if statement is true and we set the state of the
enemy to death. Similar to the collide function, we will use this as a way of applying specific
effects to the enemy before it becomes inactive.

Making the Enemy Move

An enemy which just stands still isn’t very exciting! We need to make our slime move around the
platform and turn around if they’re about to fall off the edge.

We’ll be using the enemies[i].dir property for this.

146. if enemies[i].state != death then
147. enemies[i].velocity += gravity
148. if !collision(x + eSize.x / 2, y + eSize.y + enemies[i].velocity / eSize.y) then
149. enemies[i].y += enemies[i].velocity / tSize
150. else
151. enemies[i].y = int((enemies[i].y + enemies[i].velocity / tSize + eSize.y / tSize)) - eSize.y / tSize
152. enemies[i].velocity = 0
153. endif
154. if playerX + pSize.x > x and playerX < x + eSize.x and
155. playerY + pSize.y > y and playerY < y + eSize.y and
156. enemies[i].state == active and velocity > 0
157. then
158. enemies[i].state = death
159. endif
160. if !collision(x + eSize.x / 2 + enemies[i].dir * tSize, y + eSize.y) then
161. enemies[i].dir = -enemies[i].dir
162. else
163. enemies[i].x += enemies[i].dir
164. endif
165. endif

Our new if statement begins at line 160 and ends at 164. We use the custom collision() function
again to check if the tile underneath the tile the enemy is about to walk into is empty. If it is, we
use enemies[i].dir = -enemies[i].dir to change the direction the enemy travels in. If the tile in
question is not empty, we simply keep moving!

We’re almost done!

We just need something to happen when the enemy enters the death state. Since this entire
section is wrapped in an if enemies[i].state != death, we can simply put an else before the endif to
make something happen when enemies[i].state == death:

165. else
166. enemies[i].y += 8 / tSize
167. y += 8
168. if y > screen_h then
169. enemies[i].state = inactive
170. endif
171. endif

688

This last secion of the enemy code tells the enemy what to do when it enters the death state. We
increase the y position of the enemy (moving it down the screen) and a simple if statement
checks to see if the y position has become greater than the screen height. If it is, we set the
enemy’s state to inactive, preventing it from being drawn!

The Whole For Loop

WOW! That was a lot of code. Let’s take a look at the whole enemies for loop to make sure we’ve
got this right:

139. for i = 0 to len(enemies) loop
140. if enemies[i].state != inactive then
141. x = enemies[i].x * tSize
142. y = (enemies[i].y + levelOffset) * tSize
143. eAnimStart = enemyAnim[enemies[i].type].start
144. eSize = tileSize(chrSheet, eAnimStart + enemies[i].frame) * scale)
145.
146. if enemies[i].state != death then
147. enemies[i].velocity += gravity
148. if !collision(x + eSize.x / 2, y + eSize.y + enemies[i].velocity / eSize.y) then
149. enemies[i].y += enemies[i].velocity / tSize
150. else
151. enemies[i].y = int((enemies[i].y + enemies[i].velocity / tSize + eSize.y / tSize)) - eSize.y / tSize
152. enemies[i].velocity = 0
153. endif
154. if playerX + pSize.x > x and playerX < x + eSize.x and
155. playerY + pSize.y > y and playerY < y + eSize.y and
156. enemies[i].state == active and velocity > 0
157. then
158. enemies[i].state = death
159. endif
160. if !collision(x + eSize.x / 2 + enemies[i].dir * tSize, y + eSize.y) then
161. enemies[i].dir = -enemies[i].dir
162. else
163. enemies[i].x += enemies[i].dir
164. endif
165. else
166. enemies[i].y += 8 / tSize
167. y += 8
168. if y > screen_h then
169. enemies[i].state = inactive
170. endif
171. endif
172.
173. drawSheet(chrSheet, eAnimStart + enemies[i].frame, x - screenX, y, scale)
174. enemies[i].frame += 0.05
175. if enemies[i].frame >= enemyAnim[enemies[i].type].length then
176. enemies[i].frame = 0
177. endif
178. endif
179. repeat

The Program So far

Let’s take a look at the entirety of the project so far. Make sure you’re matching up, then in the
next and final tutorial we’ll cover how to add your own ideas into the project:

 1. background = loadImage("Kenney/backgrounds", false)
 2. tilesheet = loadImage("Kenney/superPlatformPack", false)
 3. chrSheet = loadImage("Kenney/characters", false)
 4.
 5. playerX = 0
 6. playerY = 0
 7.
 8. moveSpeed = 5
 9.
 10. idle = 0
 11. walk = 1
 12. jump = 2
 13. hit = 3
 14.
 15. state = idle

689

 16.
 17. anim = [
 18. [.start = 96, .length = 1],
 19. [.start = 97, .length = 11],
 20. [.start = 95, .length = 1],
 21. [.start = 94, .length = 1]
 22.]
 23.
 24. animationFrame = 0
 25.
 26. gravity = 1
 27. velocity = 0
 28.
 29. jumpTimer = 0
 30. oldA = 0
 31.
 32. screenX = 0
 33. screenY = 0
 34.
 35. tiles = [121, 138, 128, 129, 130]
 36.
 37. level = [
 38. [-1, -1],
 39. [-1, -1],
 40. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
 41. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 42. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 43. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 44.]
 45.
 46. levelHeight = 12
 47. levelOffset = levelHeight - len(level)
 48. tsize = 0
 49.
 50. coin = 0
 51.
 52. active = 0
 53. collect = 1
 54. inactive = 2
 55. death = 3
 56.
 57. items = [
 58. [.type = coin, .x = 7, .y = 1, .state = active],
 59. [.type = coin, .x = 8, .y = 0, .state = active],
 60. [.type = coin, .x = 9, .y = 0, .state = active],
 61. [.type = coin, .x = 10, .y = 1, .state = active]
 62.]
 63.
 64. itemAnim = [
 65. [.start = 154, .length = 1]
 66.]
 67.
 68. playerCoins = 0
 69.
 70. slime = 0
 71.
 72. enemies = [
 73. [.type = slime, .x = 20, .y = 1, .state = active, .frame = 0, .velocity = 0, .dir = 0.05]
 74.]
 75.
 76. enemyAnim = [
 77. [.start = 165, .length = 2]
 78.]
 79.
 80. loop
 81. clear()
 82.
 83. c = controls(0)
 84.
 85. screen_w = gwidth()
 86. screen_h = gheight()
 87. scale = screen_h / (tileSize(tilesheet, 121).y * levelHeight)
 88. tSize = scale * tileSize(tilesheet, 121).y
 89. pSize = tileSize(chrSheet, 96) * scale
 90.
 91. if playerX - screenX < screen_w * 0.4 then
 92. screenX -= moveSpeed
 93. endif
 94. if playerX - screenX > screen_w * 0.6 then
 95. screenX += moveSpeed
 96. endif
 97. if screenX < 0 then

690

 98. screenX = 0
 99. endif
100.
101. drawImage(background, -screenX / 2, -screenY, screen_h / imageSize(background).y)
102.
103. for row = 0 to len(level) loop
104. for col = 0 to len(level[0]) loop
105. if level[row][col] >= 0 then
106. x = col * tsize
107. y = (row + levelOffset) * tsize
108. drawSheet(tilesheet, tiles[level[row][col]], x - screenX, y, scale)
109. endif
110. repeat
111. repeat
112.
113. for i = 0 to len(items) loop
114. if items[i].state != inactive then
115. x = items[i].x * tSize
116. y = (items[i].y + levelOffset) * tSize
117. if playerX + pSize.x > x and playerX < x + tSize and
118. playerY + pSize.y > y and playerY < y + tSize and
119. items[i].state == active
120. then
121. playNote(0, 3, 1046.50, 1, 20, 0.5)
122. playNote(1, 3, 1396.71, 1, 10, 0.5)
123. playerCoins += 1
124. items[i].state = collect
125. endif
126. if items[i].state == collect then
127. items[i].y -= 0.15
128. if items[i].y < -1 then
129. items[i].state = inactive
130. endif
131. endif
132. drawSheet(tilesheet, itemAnim[items[i].type].start, x - screenX, y, scale)
133. endif
134. repeat
135.
136. drawSheet(tilesheet, 154, 10, 10, scale)
137. drawText(10 + tSize * 0.75 + 10, 10, tSize * 0.75, grey, playerCoins)
138.
139. for i = 0 to len(enemies) loop
140. if enemies[i].state != inactive then
141. x = enemies[i].x * tSize
142. y = (enemies[i].y + levelOffset) * tSize
143. eAnimStart = enemyAnim[enemies[i].type].start
144. eSize = tileSize(chrSheet, eAnimStart + enemies[i].frame) * scale
145.
146. if enemies[i].state != death then
147. enemies[i].velocity += gravity
148. if !collision(x + eSize.x / 2, y + eSize.y + enemies[i].velocity / eSize.y) then
149. enemies[i].y += enemies[i].velocity / tSize
150. else
151. enemies[i].y = int((enemies[i].y + enemies[i].velocity / tSize + eSize.y / tSize)) - eSize.y / tSize
152. enemies[i].velocity = 0
153. endif
154. if playerX + pSize.x > x and playerX < x + eSize.x and
155. playerY + pSize.y > y and playerY < y + eSize.y and
156. enemies[i].state == active and velocity > 0
157. then
158. enemies[i].state = death
159. endif
160. if !collision(x + eSize.x / 2 + enemies[i].dir * tSize, y + eSize.y) then
161. enemies[i].dir = -enemies[i].dir
162. else
163. enemies[i].x += enemies[i].dir
164. endif
165. else
166. enemies[i].y += 8 / tSize
167. y += 8
168. if y > screen_h then
169. enemies[i].state = inactive
170. endif
171. endif
172.
173. drawSheet(chrSheet, eAnimStart + enemies[i].frame, x - screenX, y, scale)
174. enemies[i].frame += 0.05
175. if enemies[i].frame >= enemyAnim[enemies[i].type].length then
176. enemies[i].frame = 0
177. endif
178. endif
179. repeat

691

180.
181. if c.a and jumpTimer < 12 then
182. jumpTimer += 1
183. velocity -= 8 / jumpTimer
184. state = jump
185. endif
186.
187. if oldA and !c.a then
188. jumpTimer = 12
189. endif
190.
191. oldA = c.a
192.
193. velocity += gravity
194.
195. if !collision(playerX + psize.x / 2, playerY + pSize.y + velocity) then
196. playerY += velocity
197. else
198. playerY = int((playerY + velocity + pSize.y) / tSize) * tSize - pSize.y
199. velocity = 0
200. jumpTimer = 0
201. state = idle
202. endif
203.
204. if c.right and !collision(playerX + pSize.x / 2 + moveSpeed, playerY + pSize.y -1) then
205. playerX += moveSpeed
206. if state != jump then
207. state = walk
208. endif
209. endif
210.
211. if c.left and !collision(playerX + pSize.x / 2 - moveSpeed, playerY + pSize.y - 1) then
212. playerX -= moveSpeed
213. if state != jump then
214. state = walk
215. endif
216. endif
217.
218. animationStart = anim[state].start
219.
220. if animationFrame >= anim[state].length then
221. animationFrame = 0
222. endif
223.
224. drawSheet(chrSheet, animationStart + animationFrame, playerX - screenX, playerY, scale)
225.
226. animationFrame += 0.2
227.
228. update()
229. repeat
230.
231. function collision(x, y)
232. tileX = int(x / tsize)
233. tileY = int(y / tsize) - levelOffset
234.
235. result = true
236.
237. if tileY < 0 or tileY >= len(level) or tileX < 0 or tileX >= len(level[0]) then
238. result = false
239. else
240. if level[tileY][tileX] < 0 then
241. result = false
242. endif
243. endif
244. return result

Functions and Keywords used in this tutorial

clear(), controls(), drawImage(), drawSheet(), drawText(), else, endIf, for, function, gHeight(),
gWidth(), if, int(), len(), loadImage(), loop, playNote(), repeat, return, tileSize(), then, to, update()

692

Basic Game Tutorial 8: Customise!

Now that we’ve got our completed game, it’s high time you added your own features. In this final
tutorial we’ll cover how to add parts to the level, along with how to create more items and
enemies.

The code we have written will handle everything we throw at it. This means all we need to do is
add information to our arrays and we should see everything happen.

Customise the Level

Let’s first take a look at how to add more parts to the level:

 35. tiles = [121, 138, 128, 129, 130]

Take a look at this line in your program. This small array holds all the tiles we want to use to
design our level.

The level is defined here:

 37. level = [
 38. [-1, -1],
 39. [-1, -1],
 40. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
 41. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 42. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 43. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 44.]

As mentioned in the earlier tutorials, these numbers are used as indexes into the tiles array. When
the code reads a 1 in the level array, it finds the tile number found in tiles[1] to put on screen.

We can freely add numbers into our level array and the for loops which draw the level will
handle the drawing for us. Let’s add another platform to jump on. Take a look at the edited level
array below:

 37. level = [
 38. [-1, -1],
 39. [-1, 1, 1],
 40. [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, -1, 0, 0],
 41. [1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 0, 0],
 42. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0],
 43. [0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0]
 44.]

Here we have added 7 numbers to the end of each row in the level array. The numbers we have
added create a floating platform and a tall platform to jump on. We must put -1 in every empty tile.

Run the program to see the new section of the level we built. Try and build your own section! Add
numbers to the end of each row in the array, putting -1 in the tiles you want to leave empty.

Why not add some more tiles to draw too? All we need to do is add a couple more to the tiles
array:

 35. tiles = [121, 138, 128, 129, 130, 78, 95]

693

Here we’ve added two more tiles to our array. Since they are the 5 and 6 elements of the array, if
we use the numbers 5 and 6 in our level array, we’ll be using our new tiles!

Feel free to completely re-design the level from scratch! No need to stick with what we’ve used.
You might want a totally different design for your game.

Adding Items

Before we go about adding completely new items to our game, let’s begin with adding another
coin, since the code is already in place for this.

This part will take place in the items array:

 55. coin = 0
 56.
 57. items = [
 58. [.type = coin, .x = 7, .y = 1, .state = active],
 59. [.type = coin, .x = 8, .y = 0, .state = active],
 60. [.type = coin, .x = 9, .y = 0, .state = active],
 61. [.type = coin, .x = 10, .y = 1, .state = active]
 62.]

Here we have the items array which stores all the information about the items we have in the
game. If we want to add a coin, we simply need to create another entry in this array:

 55. coin = 0
 56.
 57. items = [
 58. [.type = coin, .x = 7, .y = 1, .state = active],
 59. [.type = coin, .x = 8, .y = 0, .state = active],
 60. [.type = coin, .x = 9, .y = 0, .state = active],
 61. [.type = coin, .x = 10, .y = 1, .state = active],
 62. [.type = coin, .x = 14, .y = 0, .state = active]
 63.]

Line 62 contains our new coin, we have set an x position of 14. Remember, the x and y positions
here are in level coordinates rather than pixel coordinates. The 14 really means column
number 14. Experiment with different numbers here to see the effects. For the y position, we use a
lower number to move the item higher. You can put negative numbers here to make the items
even higher!

Let’s create a whole new kind of item. A mushroom for exmaple!

First we’ll need to create a new item type. This will be used as an index into the itemAnim array:

 55. coin = 0
 56. mush = 1

Done. We now have a label for the mushroom item type. Now let’s create an entry into the items
array which contains the location and state of the item:

 55. coin = 0
 56. mush = 1

694

 57.
 58. items = [
 59. [.type = coin, .x = 7, .y = 1, .state = active],
 60. [.type = coin, .x = 8, .y = 0, .state = active],
 61. [.type = coin, .x = 9, .y = 0, .state = active],
 62. [.type = coin, .x = 10, .y = 1, .state = active],
 63. [.type = coin, .x = 14, .y = 0, .state = active],
 64. [.type = mush, .x = 3, .y = 2, .state = active]
 65.]

We’re not done yet! Now that we have a new item in our items array the for loop which draws
them will attempt to use the mush variable as an index into the itemAnim array. The only
problem is, we don’t have an entry for it in the itemAnim array!

Creating one is very easy. We just need the tile number of the item:

 67. itemAnim = [
 68. [.start = 154, .length = 1],
 69. [.start = 245, .length = 1]
 70.]

As you can see, we’ve added an entry into the array above. Line 69 now contains an structure
which is element [1] of the itemAnim array. The .start property contains the tile of the item to put
on screen.

Try to add some more items!

Adding Enemies

Adding enemies is almost exactly the same process as adding items. Let’s go to the enemy array:

 74. slime = 0
 75.
 76. enemies = [
 77. [.type = slime, .x = 20, .y = 1, .state = active, .frame = 0, .velocity = 0, .dir = 0.05]
 78.]

You know how it goes! First, let’s create a new enemy type variable. We’ll use a spider this time:

 74. slime = 0
 75. spider = 1

Next, we need to create the entry into the enemies array:

 77. enemies = [
 78. [.type = slime, .x = 20, .y = 1, .state = active, .frame = 0, .velocity = 0, .dir = 0.05],
 79. [.type = spider, .x = 8, .y = 1, .state = active, .frame = 0, .dir = 0.05]
 80.]

Done! Now we just need to put the animation information into the enemyAnim array:

 82. enemyAnim = [
 83. [.start = 165, .length = 2],
 84. [.start = 190, .length = 2]
 85.]

695

On line 84 we create the new entry for the spider. The tile number is 190 and lasts for two frames
of animation. Once this information is in the array, our job is done!

Taking it Further

Of course, even if we add lots of new items to our game, they will only ever behave in the same
way as the coins as things are currently.

If you wanted specific things to happen when we pick up various items, you will have to write this
code yourself! Since we know what type of item is being drawn with the .type property, you can
add some if statements to make different things happen depending on the item type.

It’s a good idea to create copies of your program just in case things go wrong. You can always find
a completed copy of the program in the tutorial.

You deserve a huge congratulations for making it through this project!

Keep practicing and keep improving!

696

697

www.fuzearena.com

698

